Answer:
A. How the concentration of the reactants affects the rate of a reaction
Explanation:
Let's consider a generic reaction.
A + B ⇒ Products
The generic rate law is:
rate = k × [A]ᵃ × [B]ᵇ
where,
- rate: rate of the reaction
- [A] and [B]: molar concentrations of the reactants
As we can see, the rate law shows how the concentration of the reactants affects the rate of a reaction.
One molecule of ammonia is composed of two atoms of nitrogen and three atoms of hydrogen. Option B.
<h3>What is an equation?</h3>
The term chemical equation has to do with the presentation of a chemical reaction on paper in a way that it can be easily understood. It is easy to write an equation to show what is going on in a reaction system.
Now we have the reactions as shown in the question. In this reaction which is the synthesis of ammonia and occurs industrially in the Haber process. The statement that is not true is that; one molecule of ammonia is composed of two atoms of nitrogen and three atoms of hydrogen. Option B.
Learn more about chemical equation:brainly.com/question/28294176
#SPJ1
Answer:
The answer is
<h2>5.0 g/cm³</h2>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 35 g
volume = 7 cm³
The density is

We have the final answer as
<h3>5.0 g/cm³</h3>
Hope this helps you
Many homeowners treat their lawns with CaCO3(s) to reduce
the acidity of the soil. The net ionic equation for the reaction of CaCO3(s)
with a strong acid, HCl (I chose HCl because it is a strong acid) is CaCO3(s) +2
HCl(aq) → CaCl2(s) + H2O(aq) + CO2(g).