C it is the energy required to break existing chemical bonds, it is the amount of energy that a reaction requires in order for the reactants to successfully collide and react
Answer:
Given, Apparent weight(W₂)=4.2N
Weight of liquid displaced (u)=2.5N
Let weight of body in air = W₁
Solution,
U=W₁-W₂
W₁=4.2=2.5=6.7N
∴Weight of body in air is 6.7N
After impact velocity = 14.968 ft/s
Weight and mass of Bullet and wooden block:
Bullet: w = 1oz = 1/16 lb m = 0.001941 lb
wooden block : W = 5lb M = 0.15528 lb
velocity of block and bullet immediately after impact:
Σmv1 + ΣImp = mv2
Resolving vertical component
( m× v₀cos30⁰) + 0 = ( m+M) v'
v' = ( m× v₀cos30⁰)/ (m+M)
v' = 14.968 ft/s
Horizontal and vertical component of the impulse exerted by block on the bullet:
Here we will apply the principle of impulse and momentum.
Horizontal component:
-mv₀ cos30⁰ + RxΔt =0
RxΔt = mv₀sin30⁰
= 0.001941 × 1400sin30⁰
RxΔt = 1.3587 lb.s
Vertical component:
-mv₀cos30⁰ + RyΔt = -mv'
RyΔt = m( v₀cos30⁰-v')
RyΔt = 0.001941(1400cos30⁰ - 14.968)
= 2.32 lb.s
Learn more about impact here:
brainly.com/question/15008937
#SPJ4
Answer:
6538.8 Angstrom
Explanation:
work function, w = 1.9 eV = 1.9 x 1.6 x 10^-19 J = 3.04 x 10^-19 J
Let the longest wavelength is λ.
W = h c / λ
λ = h c / W
λ = (6.626 x 10^-34 x 3 x 10^8) / (3.04 x 10^-19)
λ = 6.5388 x 10^-7 m = 6538.8 Angstrom
Thus, the longest wavelength is 6538.8 Angstrom.
Answer:
∑F = 10.2 N
Explanation:
We have:
Initial velocity: 0.5 m/s
Final velocity: 3 m/s
Time: 1.5 s
We have all of the components needed to calculate acceleration. Let's do that, shall we?
a = vf-vo/t
a = 2.5/1.5
a = 1.7
/
Now, look at the Net Force equation:
∑F = ma
Plug in the variables, to get:
∑F = (6)(1.7)
∑F = 10.2 N (You can round this according to significant digits)