Answer:
Option (B) is correct.
Explanation:
Given that the molecules of hydrogen gas (
) react with molecules of oxygen gas (
) in a sealed reaction chamber to produce water (
).
The governing equation for the reaction is

From the given, the only fact that can be observed that 2 moles of
and 1 mole of
reacts to produce 2 moles of
.
As the mass of 1 mole of
grams ... (i)
The mass of 1 mole of
grams ...(ii)
The mass of 1 mole of
grams (iii)
Now, the mass of the reactant = Mass of 2 moles of
+ mass 1 mole of 
[ using equations (i) and (ii)]
grams.
Mass of the product = Mass of 2 moles of 
[ using equations (iii)]
=36 grams
As the mass of reactants = mass of the product.
So, mass is conserved.
Hence, option (B) is correct.
Answer:
The quantity of motion is the measure of the same, arise from the velocity and quantity of matter conjointly. In other words, rather than defining the quantity of motion of a given object as simply the kinematic velocity v of the object, he defined it as the product mv, where m is the mass of the object.
Explanation:
Step-#1:
Ignore the wire on the right.
Find the strength and direction of the magnetic field at P,
caused by the wire on the left, 0.04m away, carrying 5.0A
of current upward.
Write it down.
Step #2:
Now, ignore the wire on the left.
Find the strength and direction of the magnetic field at P,
caused by the wire on the right, 0.04m away, carrying 8.0A
of current downward.
Write it down.
Step #3:
Take the two sets of magnitude and direction that you wrote down
and ADD them.
The total magnetic field at P is the SUM of (the field due to the left wire)
PLUS (the field due to the right wire).
So just calculate them separately, then addum up.
Answer:
ω = 12.023 rad/s
α = 222.61 rad/s²
Explanation:
We are given;
ω0 = 2.37 rad/s, t = 0 sec
ω =?, t = 0.22 sec
α =?
θ = 57°
From formulas,
Tangential acceleration; a_t = rα
Normal acceleration; a_n = rω²
tan θ = a_t/a_n
Thus; tan θ = rα/rω² = α/ω²
tan θ = α/ω²
α = ω²tan θ
Now, α = dω/dt
So; dω/dt = ω²tan θ
Rearranging, we have;
dω/ω² = dt × tan θ
Integrating both sides, we have;
(ω, ω0)∫dω/ω² = (t, 0)∫dt × tan θ
This gives;
-1[(1/ω_o) - (1/ω)] = t(tan θ)
Thus;
ω = ω_o/(1 - (ω_o × t × tan θ))
While;
α = dω/dt = ((ω_o)²×tan θ)/(1 - (ω_o × t × tan θ))²
Thus, plugging in the relevant values;
ω = 2.37/(1 - (2.37 × 0.22 × tan 57))
ω = 12.023 rad/s
Also;
α = (2.37² × tan 57)/(1 - (2.37 × 0.22 × tan 57))²
α = 8.64926751525/0.03885408979 = 222.61 rad/s²
Static electricity. Like the balloon against hair