Displacement = 0, assuming that he runs back to original position
Average velocity is displacement/ time, since displacement =0, velocity is also 0
Answer
Around 400 B.C.E, the Greek philosopher Democritus introduced the idea of the atom as the basic building block matter. Democritus though that atoms are tiny, uncuttable, solid particles that are surrounded by empty space and constantly moving at random.
Pls give me BRAINLIEST
The gas is in a rigid container: this means that its volume remains constant. Therefore, we can use Gay-Lussac law, which states that for a gas at constant volume, the pressure is directly proportional to the temperature. The law can be written as follows:

Where P1=5 atm is the initial pressure, T1=254.5 K is the initial temperature, P2 is the new pressure and T2=101.8 K is the new temperature. Re-arranging the equation and using the data of the problem, we can find P2:

So, the new pressure is 2 atm.
Explanation:
<em>Hello</em><em> </em><em>there</em><em>!</em><em>!</em><em>!</em>
<em>You</em><em> </em><em>just</em><em> </em><em>need</em><em> </em><em>to</em><em> </em><em>use</em><em> </em><em>simple</em><em> </em><em>formula</em><em> </em><em>for</em><em> </em><em>force</em><em> </em><em>and</em><em> </em><em>momentum</em><em>, </em>
<em>F</em><em>=</em><em> </em><em>m.a</em>
<em>and</em><em> </em><em>momentum</em><em> </em><em>(</em><em>p</em><em>)</em><em>=</em><em> </em><em>m.v</em>
<em>where</em><em> </em><em>m</em><em>=</em><em> </em><em>mass</em>
<em>v</em><em>=</em><em> </em><em>velocity</em><em>.</em>
<em>a</em><em>=</em><em> </em><em>acceleration</em><em> </em><em>.</em>
<em>And</em><em> </em><em>the</em><em> </em><em>solutions</em><em> </em><em>are</em><em> </em><em>in</em><em> </em><em>pictures</em><em>. </em>
<em><u>Hope</u></em><em><u> </u></em><em><u>it helps</u></em><em><u>.</u></em><em><u>.</u></em>
Answer:
The final velocity of the bullet is 9 m/s.
Explanation:
We have,
Mass of a bullet is, m = 0.05 kg
Mass of wooden block is, M = 5 kg
Initial speed of bullet, v = 909 m/s
The bullet embeds itself in the block which flies off its stand. Let V is the final velocity of the bullet. The this case, momentum of the system remains conserved. So,

So, the final velocity of the bullet is 9 m/s.