To solve this problem we will apply the concepts related to momentum and momentum on a body. Both are equivalent values but can be found through different expressions. The impulse is the product of the Force for time while the momentum is the product between the mass and the velocity. The result of these operations yields equivalent units.
PART A ) The Impulse can be calculcated as follows

Where,
F = Force
Change in time
Replacing,


PART B) At the same time the momentum follows the conservation of momentum where:
Initial momentum= Final momentum
And the change in momentum is equal to the Impulse, then

And

There is not initial momentum then



Explanation:
Given that,
Distance 1, r = 100 m
Intensity, 
If distance 2, r' = 25 m
We need to find the intensity and the intensity level at 25 meters. Intensity and a distance r is given by :
.........(1)
Let I' is the intensity at r'. So,
............(2)
From equation (1) and (2) :



Intensity level is given by :
, 

dB = 32.96 dB
Hence, this is the required solution.
Answer:
= 5/9
Explanation:
This is an exercise that we can solve using Archimedes' principle which states that the thrust is equal to the weight of the desalted liquid.
B = ρ_liquid g V_liquid
let's write the translational equilibrium condition
B - W = 0
let's use the definition of density
ρ_body = m / V_body
m = ρ_body V_body
W = ρ_body V_body g
we substitute
ρ_liquid g V_liquid = ρ_body g V_body
In the problem they indicate that the ratio of densities is 5/9, we write the volume of the bar
V = A h_bogy
Thus
we substitute
5/9 = 
Answer:
True
Explanation:
East, up, and left all define as a direction.