Answer:
Centripetal acceleration = 83.77m/s²
Explanation:
<u>Given the following data;</u>
Radius, r = 0.13m
Velocity, v = 3.3m/s
To find centripetal acceleration;
Centripetal acceleration is given by the formula;
Substituting into the equation, we have;
<em>Centripetal acceleration = 83.77m/s²</em>
<em>Therefore, the centripetal acceleration of the edge of the disc is 83.77 m/s². </em>
If the earth's mass were half its actual value but its radius stayed the same, the escape velocity of the earth would be
.
<h3>What is an escape velocity?</h3>
The ratio of the object's travel distance over a specific period of time is known as its velocity. As a vector quantity, the velocity requires both the magnitude and the direction. the slowest possible speed at which a body can break out of the gravitational pull of a certain planet or another object.
The formula to calculate the escape velocity of earth is given below:-

Given that earth's mass was half its actual value but its radius stayed the same. The escape velocity will be calculated as below:-

.
Therefore, If the earth's mass were half its actual value but its radius stayed the same, the escape velocity of the earth would be
.
To know more about escape velocity follow
brainly.com/question/14042253
#SPJ4
Answer:
360 N
Explanation:
m = 30kg u = 2 m/s a = -2m/s/s
Since the object has an initial velocity of 2 m/s and acceleration of -2 m/s/s
the object will come to rest in 1 second but the force applied in that one second can be calculated by:
F = ma
F = 30 * -2
F = -60 N (the negative sign tells us that the force is acting downwards)
Now, calculating the force applied on the box due to gravity
letting g = -10m/s/s
F = ma
F = 30 * -10
F = -300 N (the negative sign tells us that the force is acting downwards)
Now, calculating the total downward force:
-300 + (-60) = -360 N
<em></em>
<em>Hence, a downward force of 360 N is being applied on the box and since the box did not disconnect from the rope, the rope applied the same amount of force in the opposite direction</em>
Therefore tension on the force = <u>360 N</u>
Answer:
A) ( - 200t + 40 ) volts
B) b) anticlockwise , c) anticlockwise , d) clockwise , e) clockwise
Explanation:
Given data:
magnetic flux (Φm) = 5.0t^2 − 2.0t
number of turns = 20
<u>a) determine induced emf </u>
E = - N 
= - N ( 10t - 2 ) = - 20 ( 10t - 2 )
= - 200t + 40 volts
<u>b) Determine direction of induced current </u>
i) at t = 0
E = - 0 + 40 ( anticlockwise direction )
ii) at t = 0.10
E = -20 + 40 = 20 ( anticlockwise direction )
iii) at t = 1
E = - 200 + 40 = - 160 ( clockwise direction)
iv) at t = 2
E = -400 + 40 = - 360 ( clockwise direction )