<span>The
kinetic energy is the work done by the object due to its motion. It is
represented by the formula of the half the velocity squared multiply by the
mass of the object. In this problem, you have two vehicles, the other one is large and the
other one is small. Let us assume that they travel with the same velocity. Note
that the kinetic energy is proportional to the mass of the object. So when you
increase the mass of the other, it also increases the kinetic energy of that
object. The same holds true for the two vehicles. The larger the vehicle, its
kinetic energy is also large and therefore its stopping distance will be longer
than that of the smaller vehicle.</span>
In calculating the energy of a photon of light, we need the relationship for energy and the frequency which is expressed as:
E=hv
where h is the Planck's constant (6.626 x 10-34 J s)and v is the frequency.
E = 6.626 x 10-34 J s (<span>7.33 x 10^14 /s) = 4.857 x 10^-19 J</span>
The answer is apparent weight is zero.
You are still accelerating downwards at 9.8m/s^2 (if you are on Earth).
You still are being affected by the Earth's gravity.
Not all because of the previous two statements.
Not none because apparent weight is zero as you are falling.
Answer:
Average acceleration is 
Explanation:
It is given that,
Initial velocity, u = 0
Final velocity, v = 6.5 km/s = 6500 m/s
Time taken, t = 60 s
Acceleration, 

Since, 
So, 
So, the angular acceleration of the missile is
. Hence, this is the required solution.