Answer: Option (d) is the correct answer.
Explanation:
It is known that length of a bond is inversely proportional to the bond strength. This also means that a single bond has long length due to which it is weak in nature.
And, a double bond is shorter in length and has more strength as compared to a single bond. Whereas a triple bond has the smallest length and it has high strength as compared to a double or single bond.
For example, carbon monoxide is CO where there is a triple bond between the carbon and oxygen atom.
Carbon dioxide is
where there exists a double bond between the carbon and oxygen atom.
A carbonate ion is
when two oxygen atoms are attached through single bond with the carbon atom and another oxygen atom is attached through a double bond to the carbon atom.
Hence, we can conclude that order of increasing bond strength of the given carbon oxygen bond is as follows.
Carbonate ion < carbon dioxide < carbon monoxide
Answer:
Yes, yield.
Explanation:
N2(g) + 3 H2(g) → 2 NH3 (g) balanced equation
First, find limiting reactant:
Moles H2 = 1.83 g x 1 mole/2 g = 0.915 moles H2
Moles N2 = 9.84 g N2 x 1 mole/28 g = 0.351 moles N2
The mole ratio of H2: N2 is 3:1, so H2 is limiting (0.915 is less than 3 x 0.351)
Theoretical yield of NH3 = 0.915 mol H2 x 2 mol NH3/3 mol H2 = 0.61 moles NH3
C. Aluminum (Al) oxidized, zinc (Zn) reduced
<h3>Further explanation</h3>
Given
Metals that undergo oxidation and reduction
Required
A galvanic cell
Solution
The condition for voltaic cells is that they can react spontaneously, indicated by a positive cell potential.

or:
E ° cell = E ° reduction-E ° oxidation
For the reaction to occur spontaneously (so that it E cell is positive), the E° anode must be less than the E°cathode
If we look at the voltaic series:
<em>Li-K-Ba-Ca-Na-Mg-Al-Mn- (H2O) -Zn-Cr-Fe-Cd-Co-Ni-Sn-Pb- (H) -Cu-Hg-Ag-Pt-Au </em>
The standard potential value(E°) from left to right in the voltaic series will be greater, so that the metal undergoing an oxidation reaction (acting as an anode) must be located to the left of the reduced metal (as a cathode)
<em />
From the available answer choices, oxidized Al (anode) and reduced Zn (cathode) are voltaic/galvanic cells.
<span>A covalent bond is a bond formed by atom sharing.
In water molecule, there are twice the number of hydrogen atoms than the oxygen atoms. Its structure is H-O-H. The electronegative difference between the H and O allows them to be polar because on side there is positive charge and on another side there is negative charge.</span>
Lower fertility and longer lifespans steadily increased the potential labor force relative to the total population