Explanation:
u=166m/s, v=0(at it's highest point final velocity is zero), a=9.8m/s², t=8.6s
by the formula, S=ut+½at².
S=[166×8.6+½.×9.8×(8.6)²]. ...by calculation
S = 1427.6+362.404
S=1790.004m
hope this helps you.
Answer:
v = 5.24[m/s]
Explanation:
Este problema se puede resolver por medio del principio de la conservación de la energía, donde la energía potencial es igual a la energía cinética. Es decir a medida que el carrito desciende su energía potencial disminuye, pero su energía cinética aumenta.

Donde:

Ahora reemplazando:
![\frac{1}{2} *m*v^{2}=m*g*h\\\\0.5*v^{2}=9.81*1.4\\v=\sqrt{\frac{9.81*1.4}{0.5} } \\\\v=5.24[m/s]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%3Dm%2Ag%2Ah%5C%5C%5C%5C0.5%2Av%5E%7B2%7D%3D9.81%2A1.4%5C%5Cv%3D%5Csqrt%7B%5Cfrac%7B9.81%2A1.4%7D%7B0.5%7D%20%7D%20%20%20%5C%5C%5C%5Cv%3D5.24%5Bm%2Fs%5D)
<span>1) The differential equation that models the RC circuit is :
(d/dt)V_capacitor </span>+ (V_capacitor/RC) = (V_source/<span>RC)</span>
<span>Where the time constant of the circuit is defined by the product of R*C
Time constant = T = R*C = (</span>30.5 ohms) * (89.9-mf) = 2.742 s
2) C<span>harge of the capacitor 1.57 time constants
1.57*(2.742) = 4.3048 s
The solution of the differential equation is
</span>V_capac (t) = (V_capac(0) - V_capac(∞<span>))e ^(-t /T) + </span>V_capac(∞)
Since the capacitor is initially uncharged V_capac(0) = 0
And the maximun Voltage the capacitor will have in this configuration is the voltage of the battery V_capac(∞) = 9V
This means,
V_capac (t) = (-9V)e ^(-t /T) + 9V
The charge in a capacitor is defined as Q = C*V
Where C is the capacitance and V is the Voltage across
V_capac (4.3048 s) = (-9V)e ^(-4.3048 s /T) + 9V
V_capac (4.3048 s) = (-9V)e ^(-4.3048 s /2.742 s) + 9V
V_capac (4.3048 s) = (-9V)e ^(-4.3048 s /2.742 s) + 9V = -1.87V +9V
V_capac (4.3048 s) = 7.1275 V
Q (4.3048 s) = 89.9mF*(7.1275V) = 0.6407 C
3) The charge after a very long time refers to the maximum charge the capacitor will hold in this circuit. This occurs when the voltage accross its terminals is equal to the voltage of the battery = 9V
Q (∞) = 89.9mF*(9V) = 0.8091 C
The work done is positive and is equal to 20000 J
<h3>What is work done?</h3>
Work done is defined as the product of force and the distance moved by the force.
Mathematically:
- Work done = force * distance
The work done by the force = 20 * 1000 = 20000J
The work done is positive and is equal to 20000 J
Learn more about work done at: brainly.com/question/25923373
#SPJ1