<h3><u>Answer;</u></h3>
The period of the wave is <u><em>4 seconds</em></u>
<h3>
<em><u>Explanation;</u></em></h3>
- <em><u>The period of a wave or periodic time is the time taken for one complete oscillation to occur.</u></em> In this case, one complete oscillation occurs when the wave moves from one crest to the next or a trough to the next. <em><u>This takes 4 seconds. Therefore the period is 4 seconds.</u></em>
- <em><u>Frequency on the other hand is the number of oscillations by a wave in one second. Thus, f = 1/T, that is frequency is the reciprocal of periodic time.</u></em>
Answer:
t = √2y/g
Explanation:
This is a projectile launch exercise
a) The vertical velocity in the initial instants (
= 0) zero, so let's use the equation
y =
t -1/2 g t²
y= - ½ g t²
t = √2y/g
b) Let's use this time and the horizontal displacement equation, because the constant horizontal velocity
x = vox t
x = v₀ₓ √2y/g
c) Speeds before touching the ground
vₓ = vox = constant
=
- gt
= 0 - g √2y/g
= - √2gy
tan θ = Vy / vx
θ = tan⁻¹ (vy / vx)
θ = tan⁻¹ (√2gy / vox)
d) The projectile is higher than the cliff because it is a horizontal launch
Answer:
A 70 kg box is slid along the floor by a 400 n force. The coefficient of friction between the box and the floor is 0. 50 when the box is sliding
Answer:
<h2>42.67N</h2>
Explanation:
Step one:
<u>Given </u>
mass m= 0.32kg
intital velocity, u= 14m/s
final velocity v= 22m/s
time= 0.06s
Step two:
<u>Required</u>
Force F
the expression for the force is
F=mΔv/t
F=0.32*(22-14)/0.06
F=(0.32*8)/0.06
F=2.56/0.06
F=42.67N
The average force exerted on the bat 42.67N