1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
prohojiy [21]
3 years ago
12

A point charge q1=2.0μC is located on the positive y axis at y=0.30m, and an identical charge q2 is at the origin. Find the magn

itude and direction of the total force that these two charges exert on a third charge q3=4.0μC that is on the positive x axis at x=0.40m..A)In the same example, what is the magnitude of the net force on q3 if q1=2.0μC, as in the example, but q2=−2.0μC?B)In the same example, what is the direction of the force on q3 if q1=2.0μC, as in the example, but q2=−2.0μC?

Physics
2 answers:
weqwewe [10]3 years ago
8 0

Answer:

q1=2*10^-6 C

location is on positive y-axis at y=0.30 m

origin q2=0

q3=4*10^-3

x=0.40 m

F=q1*q2/r^2

The magnitude of force will be 98.97 N

And it will be in the negative y direction.

dalvyx [7]3 years ago
4 0

Answer:

(A) 0.279N at angle 38.02°

(B) 0.701N

(C) 14.19°

Explanation:

(A) The net force on q3 is given as:

F = Fxi + Fyj

Fx is the x component of the force

Fy is the y component of the force

Fx = -F(1, 3)cos(90 - x) + F(2, 3)cos0

Fy = -F(2, 3)cosx - F(2, 3)cos90 = -F(2, 3)cosx

First let us find y and angle x from the diagram.

Using Pythagoras theorem,

y² = 0.3² + 0.4²

y² = 0.25

y = 0.5m

Using SOHCAHTOA to find x,

sinx = 0.4/0.5

x = 53.13°

Electrostatic force, F is given as:

F = kqQ/r²

Where k = Coulumbs constant

F(1,3) = (k*q1*q3) / r²

F(1, 3) = (9 * 10^9 * 2.0 * 10^(-6) * 4.0 * 10^(-6)) / (0.5²)

F(1, 3) = 0.288N

F(2,3) = (k*q2*q3) / r²

F(2, 3) = (9 * 10^9 * 2.0 * 10^(-6) * 4.0 * 10^(-6)) / (0.4²)

F(2, 3) = 0.45N

Therefore,

Fx = -0.288cos36.87 + 0.45

Fx = 0.22N

Fy = 0.288cos53.13

Fy = 0.172N

=> F = 0.22i + 0.172j

The magnitude of the force will be

F(mag) = √(0.22² + 0.172²)

F(mag) = 0.279N

The direction of the force makes will be

tanθ = Fy/Fx

tanθ = 0.172/0.22 = 0.781

θ = 38.02° to the x axis.

(B) q2 = - 2.0 * 10^(-6)

This implies that:

F(2,3) = (k*q2*q3) / r²

F(2, 3) = (9 * 10^9 * -2.0 * 10^(-6) * 4.0 * 10^(-6)) / (0.4²)

F(2, 3) = -0.45N

Therefore,

Fx = -0.288cos36.87 - 0.45

Fx = -0.68N

Fy = 0.172N

=> F = - 0.68i + 0.172j

The magnitude of the force will be

F(mag) = √((-0.68)² + 0.172²)

F(mag) = 0.701N

(C) The direction of the force makes will be

tanθ = 0.172/0.68

θ = 14.19° to the x axis

You might be interested in
Two trains travel toward each other on the same track, beginning 100 miles apart. One train travels at 40 miles per hour; the ot
Paladinen [302]

D = distance between th two trains at the start of the motion = 100 miles

V = speed of the faster train towards slower train = 60 mph

v = speed of the slower train towards faster train = 40 mph

t = time taken by the two trains to collide = ?

time taken by the two trains to collide is given as

t = D/(V + v)

t = 100/(60 + 40) = 1 h

v' = speed of the bird = 90 mph

d = distance traveled by the bird

distance traveled by the bird is given as

d = v' t

d = 90 x 1

d = 90 miles

7 0
3 years ago
Read 2 more answers
What dating technique could scientists use to find the age of a meteorite?
kvasek [131]
Radiometric dating?
Also, possibly radiocarbon dating 
8 0
3 years ago
The ammonia molecule (NH3) has a dipole moment of 5.0×10?30C?m. Ammonia molecules in the gas phase are placed in a uniform elect
Neko [114]

Question (continuation)

(a) What is the change in electric potential energy when the dipole moment of a molecule changes its orientation with respect to E S from parallel to perpendicular?

(b) At what absolute temperature T is the average translational kinetic energy 3/2kT of a molecule equal to the change in potential energy calculated in part (a)?

Answer:

a. 9.0 * 10^-24 Joules

b. 0.44K

Explanation:

Given

Let p = dipole moment = 5.0 * 10^-30 Cm

Let E = Magnitude = 1.8 * 10^6 N/m

a.

The charge in electric potential = Final Charge - Initial Charge

Initial Charge = Potential Energy

Initial Energy = -pE cosФ where Ф = 0

So, initial Energy = - 5.0 * 10^-30 * 1.8 * 10^6

Initial Energy = -9 * 10^-24 Joules

Final Energy = 0

Charge = 0 - (-9.0 * 10^-24)

Charge = 9.0 * 10^-24 Joules

b.

Absolute Temperature

Change in Kinetic Energy = Change in Potential Energy = 9.0 * 10^-24

Change in Kinetic Energy = 3/2kT where k is Steven-Boltzmann constant = 1.38 * 10^-23

So,

9.0 * 10^-24 = 3/2 * 1.38 * 10^-23 * T

T = (9.0 * 10^-24 * 2)/(3 * 1.38 * 10^-23)

T = (18 * 10^-24)/(4.14 * 10^-23)

T = 0.44K

6 0
3 years ago
A slender rod is 90.0 cm long and has mass 0.120 kg. A small 0.0200 kg sphere is welded to one end of the rod, and a small 0.070
likoan [24]

Given Information:

length of slender rod = L = 90 cm = 0.90 m

mass of slender rod = m = 0.120 kg

mass of sphere welded to one end = m₁ = 0.0200 kg

mass of sphere welded to another end = m₂ = 0.0700 kg (typing error in the question it must be 0.0500 kg as given at the end of the question)

Required Information:

Linear speed of the 0.0500 kg sphere = v = ?

Answer:

Linear speed of the 0.0500 kg sphere = 1.55 m/s

Explanation:

The velocity of the sphere can by calculated using

ΔKE = ½Iω²

Where I is the moment of inertia of the whole setup ω is the speed and ΔKE is the change in kinetic energy

The moment of inertia of a rigid rod about center is given by

I = (1/12)mL²

The moment of inertia due to m₁ and m₂ is

I = (m₁+m₂)(L/2)²

L/2 means that the spheres are welded at both ends of slender rod whose length is L.

The overall moment of inertia becomes

I = (1/12)mL² + (m₁+m₂)(L/2)²

I = (1/12)0.120*(0.90)² + (0.0200+0.0500)(0.90/2)²

I = 0.0081 + 0.01417

I = 0.02227 kg.m²

The change in the potential energy is given by

ΔPE = m₁gh₁ + m₂gh₂

Where h₁ and h₂ are half of the length of slender rod

L/2 = 0.90/2 = 0.45 m

ΔPE = 0.0200*9.8*0.45 + 0.0500*9.8*-0.45

The negative sign is due to the fact that that m₂ is heavy and it would fall and the other sphere m₁ is lighter and it would will rise.

ΔPE = -0.1323 J

This potential energy is then converted into kinetic energy therefore,

ΔKE = ½Iω²

0.1323 = ½(0.02227)ω²

ω² = (2*0.1323)/0.02227

ω = √(2*0.1323)/0.02227

ω = 3.45 rad/s

The linear speed is

v = (L/2)ω

v = (0.90/2)*3.45

v = 1.55 m/s

Therefore, the linear speed of the 0.0500 kg sphere as its passes through its lowest point is 1.55 m/s.

8 0
3 years ago
When the leaves are __________________, they fall straight down.
konstantin123 [22]

Answer:Done doing there job, in the winter they have a break

Explanation:

7 0
3 years ago
Other questions:
  • At a certain time a particle had a speed of 87 m/s in the positive x direction, and 6.0 s later its speed was 74 m/s in the oppo
    12·1 answer
  • Which equation best describes the law of conservation of momentum?
    11·2 answers
  • There are ________ main groups in the modern periodic table of elements.
    13·1 answer
  • Which type of sensor uses a burn-off circuit ​
    11·1 answer
  • Ian throws a ball straight up into the air at a speed of 10 m/s. what is the ball's speed at the highest point?
    15·1 answer
  • How does the law of conservation of energy apply to machines?
    11·2 answers
  • Which resource would be the best choice to learn more information about studying martial arts?
    10·1 answer
  • What electric force would a stationary 3.8 C charge experience if it were far away from any other charges
    5·1 answer
  • A woman holds a frozen smoothie in her hand on a warm
    15·2 answers
  • A person, with his ear to the ground, sees a huge stone strike the concrete pavement. A moment later two sounds are heard from t
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!