Answer:
No the given statement is not necessarily true.
Explanation:
We know that the kinetic energy of a particle of mass 'm' moving with velocity 'v' is given by

Similarly the momentum is given by 
For 2 particles with masses
and moving with velocities
respectively the respective kinetic energies is given by


Similarly For 2 particles with masses
and moving with velocities
respectively the respective momenta are given by


Now since it is given that the two kinetic energies are equal thus we have

Thus we infer that the moumenta are not equal since the ratio on right of 'i' is not 1 , and can be 1 only if the velocities of the 2 particles are equal which becomes a special case and not a general case.
Answer:
Explanation:
Given that,
Force is downward I.e negative y-axis
F = -2 × 10^-14 •j N
Magnetic field is westward, +x direction
B = 8.3 × 10^-2 •i T
Charge of an electron
q = 1.6 × 10^-19C
Velocity and it direction?
Force in a magnetic field is given as
F = q(V×B)
Angle between V and B is 270, check attachment
The cross product of velocity and magnetic field
F =qVB•Sin270
2 × 10^-14 = 1.6 × 10^-19 × V × 8.3 × 10^-2
Then,
v = 2 × 10^-14 / (1.6 × 10^-19 × 8.3 × 10^-2)
v = 1.51 × 10^6 m/s
Direction of the force
Let x be the direction of v
-F•j = v•x × B•i
From cross product
We know that
i×j = k, j×i = -k
j×k =i, k×j = -i
k×i = j, i×k = -j OR -k×i = -j
Comparing -k×i = -j to given problem
We notice that
-F•j = q ( -V•k × B×i)
So, the direction of V is negative z- direction
V = -1.51 × 10^6 •k m/s
Divide distance by the time it takes to travel that distance
the formula for time is divide distance/speed
Answer:
(a) 
(b) neither increasing or decreasing
(c) opposite to the flow of charge carriers
Explanation:
The current through an inductor of inductance L is given by:
(1)
(a) The induced emf is given by the following formula
(2)
You derivative the expression (1) in the expression (2):

(b) At t=0 the current is zero
(c) At t = 0 the emf is:

w, L and Imax have positive values, then the emf is negative. Hence, the induced emf is opposite to the flow of the charge carriers.
(d) read the text carefully