Answer:
1 x 10¹⁷
Explanation:
Given data:
Radius of the earth = 6000km
Radius of an atom = 60pm
Now, how many orders is the radius of the earth larger than an atom
Solution:
To solve this problem, let us express both quantity as the same unit;
1000m = 1km
6000km = 6000 x 10³m = 6 x 10⁶m
60pm;
1 x 10⁻¹²m = 1pm
60pm = 60 x 1 x 10⁻¹²m = 6 x 10⁻¹¹m
Now;
The order:
= 1 x 10¹⁷
Answer:
When have passed 3.9[s], since James threw the ball.
Explanation:
First, we analyze the ball thrown by James and we will find the final height and velocity by the time two seconds have passed.
We'll use the kinematics equations to find these two unknowns.
![y=y_{0} +v_{0} *t+\frac{1}{2} *g*t^{2} \\where:\\y= elevation [m]\\y_{0}=initial height [m]\\v_{0}= initial velocity [m/s] =41.67[m/s]\\t = time passed [s]\\g= gravity [m/s^2]=9.81[m/s^2]\\Now replacing:\\y=0+41.67 *(2)-\frac{1}{2} *(9.81)*(2)^{2} \\\\y=63.72[m]\\](https://tex.z-dn.net/?f=y%3Dy_%7B0%7D%20%2Bv_%7B0%7D%20%2At%2B%5Cfrac%7B1%7D%7B2%7D%20%2Ag%2At%5E%7B2%7D%20%5C%5Cwhere%3A%5C%5Cy%3D%20elevation%20%5Bm%5D%5C%5Cy_%7B0%7D%3Dinitial%20height%20%5Bm%5D%5C%5Cv_%7B0%7D%3D%20initial%20velocity%20%5Bm%2Fs%5D%20%3D41.67%5Bm%2Fs%5D%5C%5Ct%20%3D%20time%20passed%20%5Bs%5D%5C%5Cg%3D%20gravity%20%5Bm%2Fs%5E2%5D%3D9.81%5Bm%2Fs%5E2%5D%5C%5CNow%20replacing%3A%5C%5Cy%3D0%2B41.67%20%2A%282%29-%5Cfrac%7B1%7D%7B2%7D%20%2A%289.81%29%2A%282%29%5E%7B2%7D%20%5C%5C%5C%5Cy%3D63.72%5Bm%5D%5C%5C)
Note: The sign for the gravity is minus because it is acting against the movement.
Now we can find the velocity after 2 seconds.
![v_{f} =v_{o} +g*t\\replacing:\\v_{f} =41.67-(9.81)*(2)\\\\v_{f}=22.05[m/s]](https://tex.z-dn.net/?f=v_%7Bf%7D%20%3Dv_%7Bo%7D%20%2Bg%2At%5C%5Creplacing%3A%5C%5Cv_%7Bf%7D%20%3D41.67-%289.81%29%2A%282%29%5C%5C%5C%5Cv_%7Bf%7D%3D22.05%5Bm%2Fs%5D)
Note: The sign for the gravity is minus because it is acting against the movement.
Now we can take these values calculated as initial values, taking into account that two seconds have already passed. In this way, we can find the time, through the equations of kinematics.

As we can see the equation is based on Time (t).
Now we can establish with the conditions of the ball launched by David a new equation for y (elevation) in function of t, then we match these equations and find time t
![y=y_{o} +v_{o} *t+\frac{1}{2} *g*t^{2} \\where:\\v_{o} =55.56[m/s] = initial velocity\\y_{o} =0[m]\\now replacing\\63.72 +22.05 *t-(4.905)*t^{2} =0 +55.56 *t-(4.905)*t^{2} \\63.72 +22.05 *t =0 +55.56 *t\\63.72 = 33.51*t\\t=1.9[s]](https://tex.z-dn.net/?f=y%3Dy_%7Bo%7D%20%2Bv_%7Bo%7D%20%2At%2B%5Cfrac%7B1%7D%7B2%7D%20%2Ag%2At%5E%7B2%7D%20%5C%5Cwhere%3A%5C%5Cv_%7Bo%7D%20%3D55.56%5Bm%2Fs%5D%20%3D%20initial%20velocity%5C%5Cy_%7Bo%7D%20%3D0%5Bm%5D%5C%5Cnow%20replacing%5C%5C63.72%20%2B22.05%20%2At-%284.905%29%2At%5E%7B2%7D%20%3D0%20%2B55.56%20%2At-%284.905%29%2At%5E%7B2%7D%20%5C%5C63.72%20%2B22.05%20%2At%20%3D0%20%2B55.56%20%2At%5C%5C63.72%20%3D%2033.51%2At%5C%5Ct%3D1.9%5Bs%5D)
Then the time when both balls are going to be the same height will be when 2 [s] plus 1.9 [s] have passed after David throws the ball.
Time = 2 + 1.9 = 3.9[s]
Answer:
a)
= 0.25 m / s b) u = 0.25 m / s
Explanation:
a) To solve this problem let's start with the conservation of the moment, for this we define a system formed by the ball plus the dog, in this case all the forces are internal and the moment is conserved
We will write the data
m₁ = 0.40 kg
v₁₀ = 9.0 m / s
m₂ = 14 kg
v₂₀ = 0
Initial
po = m₁ v₁₀
Final
= (m₁ + m₂) vf
po = pf
m₁ v₁₀ = (m₁ + m₂) 
= v₁₀ m₁ / (m₁ + m₂)
= 9.0 (0.40 / (0.40 +14)
= 0.25 m / s
b) This is the reference frame of the center of mass of the system in this case the speed of this frame is the speed of the center of mass
u = 0.25 m / s
In the direction of movement of the ball
c) Let's calculate the kinetic energy in both moments
Initial
K₀ = ½ m₁ v₁₀² +0
K₀ = ½ 0.40 9 2
K₀ = 16.2 J
Final
= ½ (m₁ + m₂)
2
= ½ (0.4 +14) 0.25 2
= 0.45 J
ΔK = K₀ - 
ΔK = 16.2-0.445
ΔK = 1575 J
These will transform internal system energy
d) In order to find the kinetic energy, we must first find the velocities of the individual in this reference system.
v₁₀’= v₁₀ -u
v₁₀’= 9 -.025
v₁₀‘= 8.75 m / s
v₂₀ ‘= v₂₀ -u
v₂₀‘= - 0.25 m / s
‘=
- u
= 0
Initial
K₀ = ½ m₁ v₁₀‘² + ½ m₂ v₂₀‘²
Ko = ½ 0.4 8.75² + ½ 14.0 0.25²
Ko = 15.31 + 0.4375
K o = 15.75 J
Final
= ½ (m₁ + m₂) vf’²
= 0
All initial kinetic energy is transformed into internal energy in this reference system
Since my givens are x = .550m [Vsub0] = unknown
[Asubx] = =9.80
[Vsubx]^2 = [Vsub0x]^2 + 2[Asubx] * (X-[Xsub0]
[Vsubx]^2 = [Vsub0x]^2 + 2[Asubx] * (X-[Xsub0])
Vsubx is the final velocity, which at the max height is 0, and Xsub0 is just 0 as that's where it starts so I just plug the rest in
0^2 = [Vsub0x]^2 + 2[-9.80]*(.550)
0 = [Vsub0x]^2 -10.78
10.78 = [Vsub0x]^2
Sqrt(10.78) = 3.28 m/s