Answer: the direction of the magnetic force on the electron will be moving out of the screen, perpendicular to the magnetic field.
Explanation:
The magnetic force F on a moving electron at right angle to a magnetic field is given by the formula:
F = BqVSinØ
If an electron moves in the plane of this screen toward the top of the screen. A magnetic field is also in the plane of the screen and directed toward the right. Then, the direction of the magnetic force on the electron will be perpendicular to the magnetic field
According to the Fleming's left - hand rule, the direction of the magnetic force on the electron will be moving out of the plane of the screen.
^
|
|
|
----------->|
Square root of (4^2 + 4^2) = 4*squareRoot(2)
You are looking at yourself in a plane mirror, a distance of 3 meters from the mirror. your brain interprets what you are seeing in the mirror as being a person standing 6 meters from you.
<h3>Calculation</h3>
The plane mirror shows an exact replica of the real world. that means the distance of you from the mirror is the same distance as your reflection form the mirror at the opposite side of the mirror.
Thus, distance of image from the plane mirror is same as the distance of object (person) from the plane mirror but the image is formed behind the mirror.
Thereby we have v=u=3 m
Thus, distance between image and the person
is d = v + u = 3 + 3 = 6 m
Thus, the person is 6 meters away from the image.
To know more such mirror problems, visit:
brainly.com/question/14687229
#SPJ4