Its true the ionic compounds have a higher melting point
Explanation:
It is known that relation between torque and angular acceleration is as follows.

and, I = 
So, 
= 4 


So, 
= 1 
as 
=
Hence, 

Thus, we can conclude that the new rotation is
times that of the first rotation rate.
Answer:
buoyant force on the block due to the water= 10 N
Explanation:
We know that
buoyant force(F_B) on a block= weight of the block in air (actual weight) - weight of block in water.
Given:
A block of metal weighs 40 N in air and 30 N in water.
F_B = 40-30= 10 N
therefore, buoyant force on the block due to the water= 10 N
Answer:
A. 
B. 
C. 
D.
Explanation:
Given:
- no. of moles of oxygen in the cylinder,

- initial pressure in the cylinder,

- initial temperature of the gas in the cylinder,

<em>According to the question the final volume becomes twice of the initial volume.</em>
<u>Using ideal gas law:</u>



A.
<u>Work done by the gas during the initial isobaric expansion:</u>




C.
<u>we have the specific heat capacity of oxygen at constant pressure as:</u>

Now we apply Charles Law:



<u>Now change in internal energy:</u>



B.
<u>Now heat added to the system:</u>



D.
Since during final cooling the process is isochoric (i.e. the volume does not changes). So,
Answer:
The value of A is 1.5m/s^2 and B is 0.5m/s^³
Explanation:
The mass of the rocket = 2540 kg.
Given velocity, v(t)=At + Bt^2
Given t =0
a= 1.50 m/s^2
Now, velocity V(t) = A*t + B*t²
If, V(0) = 0, V(1) = 2
a(t) = dV/dt = A+2B × t
a(0) = 1.5m/s^²
1.5m/s^² = A + 2B × 0
A = 1.5m/s^2
now,
V(1) = 2 = A× 1 + B× 1^²
1.5× 1 +B× 1 = 2m/s
B = 2-1.5
B = 0.5m/s^³
Now Check V(t) = A× t + B × t^²
So, V(1) = A× (1s) + B× (1s)^² = 1.5m/s^² × 1s + 0.5m/s^³ × (1s)^² = 1.5m/s + 0.5m/s = 2m/s
Therefore, B is having a unit of m/s^³ so B× (1s)^² has units of velocity (m/s)