Answer:
a)40100m/s
b)-4.348x10^- m/s^2
Explanation:
to calculate the change in the planet's velocity we have to rest the speeds
ΔV=-22.8-17.3=-40.1km/s=40100m/s
A body that moves with constant acceleration means that it moves in "a uniformly accelerated movement", which means that if the velocity is plotted with respect to time we will find a line and its slope will be the value of the acceleration, it determines how much it changes the speed with respect to time.
When performing a mathematical demonstration, it is found that the equations that define this movement are as follows.
Vf=Vo+a.t (1)\\\\
{Vf^{2}-Vo^2}/{2.a} =X(2)\\\\
X=Xo+ VoT+0.5at^{2} (3)\\
Where
Vf = final speed
Vo = Initial speed
T = time
A = acceleration
X = displacement
In conclusion to solve any problem related to a body that moves with constant acceleration we use the 3 above equations and use algebra to solve
for this problem we have to convert the time interval ins seconds, we know that a year has 53926560s
t=1.71years=53926560*1.71=92214417.6
then we can use the ecuation number 1 to calculate the aceleration
Vf=-22.8km/s
Vo=17.3km/s
Vf=Vo+at
a=(vf-vo)/t
a=(-22.8-17.3)/92214417.6
a=-4.348x10^-7 km/s^2=-4.348x10^- m/s^2
Answer:
The carbon atom has unique properties that allow it to form covalent bonds to as many as four different atoms, making this versatile element ideal to serve as the basic structural component, or “backbone,” of the macromolecules.
Answer:
à in unit vector notation = 12.26485i + 7.54539j
B in unit vector notation = 16.3516i + 3.11529j
Explanation:
The detailed steps and calculation is shown in the attachment.
Answer: b
Explanation:
When heat is released by the system i.e. system loses heat. So, we take it as negative -Q
When the work is done on the system then it is considered as negative work on the system i.e. -W
In this case, the plunger is pulled out, and work is done on the system. So, we take work as negative work -W
Correct option is b
Pressure and heat. I hope this helps