Answer:
huh? do you need help on math?
Explanation:
what do you mean?
Answer:
70.5 mph
Explanation:
A passenger jet travels from Los Angeles to Bombay, India, in 22h.
The return flight takes 17 h.
The difference in flight times is caused by winds over the Pacific Ocean that
blow primarily from west to east.
If the jet's average speed in still air is 550 mi/h what is the average speed
of the wind during the round trip flight? Round to the nearest mile per hour.
Is your answer reasonable?
:
Let w = speed of the wind
:
Write a distance equation (dist is the same both ways
17(550+w) = 22(550-w)
9350 + 17w = 12100 - 22w
17w + 22w = 12100 - 9350
39w = 2750
W = 2750/39
w = 70.5 mph seems very reasonable
:
Confirming if the solution by finding the distances using these value
17(550+70.5) = 10549 mi
22(550-70.5) = 10549 mi; confirms our solution of w = 70.5 mph
Answer:
b) R/4 (There seems to an error in mentioning the multiple choices of this question, please see below explanation of correct calculations for this question.)
Explanation:
dimension of the conductor before melting is l, r
reistivity is p
R=(p*l)/(pie*r2)
after reforming length is reduced to L=l/4
volume in both the cases will be same
i.e. pie * r^2 * l =pie * R^2 * L
r^2 * l = R^2 * (1/2)l
due to this radius will become R=sqrt(2) * r
now new reistance is given by Rx=(p * L)/(pie * R^2)
i.e. Rx=(p * l/2)/(pie * r^2 * 2)
after simplification RX=((p * l)/(pie * r^2))/4
i.e. Rx=R/4
Longer the air column is the more harmonics are created. due to the longer column the waves have more space to bounce off of the sides of the column to create more harmonics.
Answer:
1.73 seconds
Explanation:
The velocity the ball first hits the ground with is:
v² = v₀² + 2aΔx
v² = (0 m/s)² + 2 (-10 m/s²) (-20 m)
v = -20 m/s
The velocity it rebounds with is 3/4 of that in the opposite direction, or 15 m/s.
The time it takes to return to the ground is:
Δx = v₀ t + ½ at²
0 = (15 m/s) t + ½ (-10 m/s²) t²
0 = t (15 − 5t²)
t = √3
t ≈ 1.73 seconds