Answer:
shrinks with all the fringes getting narrower
Explanation:
As the light passes through the slit, the diffraction pattern shrinks, as the waves have more opening to penetrate, and the fringes becomes more narrow as a result of that, The opposite happens as the conditions are reversed.
a) earth acts as a lange magnetic. Therefore when a magnet is hanging freely, it points towards the magnetic poles (like a compass)
b) like poles repel and unlike poles attracts. We can conclude with repulsion that poles are same
c) In our everyday experience aluminum doesn't stick to magnets. (under normal circumstances aluminum isn't visibly magnetic)
In order to answer these questions, we need to know the charges on
the electron and proton, and then we need to know the electron's mass.
I'm beginning to get the creepy feeling that, in return for the generous
5 points, you also want me to go and look these up so I can use them
in calculations ... go and collect my own straw to make the bricks with,
as it were.
Ok, Rameses:
Elementary charge . . . . . 1.6 x 10⁻¹⁹ coulomb
negative on the electron
plussitive on the proton
Electron rest-mass . . . . . 9.11 x 10⁻³¹ kg
a). The force between two charges is
F = (9 x 10⁹) Q₁ Q₂ / R²
= (9 x 10⁹ m/farad) (-1.6 x 10⁻¹⁹C) (1.6 x 10⁻¹⁹C) / (5.35 x 10⁻¹¹m)²
= ( -2.304 x 10⁻²⁸) / (5.35 x 10⁻¹¹)²
= 8.05 x 10⁻⁸ Newton .
b). Centripetal acceleration =
v² / r .
A = (2.03 x 10⁶)² / (5.35 x 10⁻¹¹)
= 7.7 x 10²² m/s² .
That's an enormous acceleration ... about 7.85 x 10²¹ G's !
More than enough to cause the poor electron to lose its lunch.
It would be so easy to check this work of mine ...
First I calculated the force, then I calculated the centripetal acceleration.
I didn't use either answer to find the other one, and I didn't use " F = MA "
either.
I could just take the ' F ' that I found, and the 'A' that I found, and the
electron mass that I looked up, and mash the numbers together to see
whether F = M A .
I'm going to leave that step for you. Good luck !
When a footballer collides with the goal post, the forces at work are the action and reaction forces. The player will exert an action force on the goal post, and then a reaction force from the goal post will stop the player. The reaction force call will cause pain and even injury to the player.
Demographic Barriers, Occupation, Age, Obesity, <span>
Psychological Barriers</span>