1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vitek1552 [10]
3 years ago
15

According to Charles's Law, if the pressure of a gas stays constant, when the temperature increases, the volume __________.

Physics
2 answers:
miskamm [114]3 years ago
8 0
The correct answer is "the volume increases".

In fact, Charle's law states that when the pressure of a gas stays constant, the ratio between the temperature and the volume of the gas is constant:
\frac{T}{V} =k
where T is the gas temperature and V is its volume. We see from the formula that, if the temperature T increases, since the ratio must remain constant, the volume of the gas V increases as well.
Andrej [43]3 years ago
3 0

The volume increases is right for apex

You might be interested in
The motor in a refrigerator has a power output of 294 W. If the freezing compartment is at 271 K and the outside air is at 310 K
dusya [7]

Answer:

Maximum amount of heat = 10002151.38J

Explanation:

Workdone by motor in 86.1 minutes I given by:

W = power × time

W= 294 × 86.1×60

W= 1439424 Joules

W= 1.4 ×10^6Joules

The amount of heat extracted is given by:

/QL /= K/W/ = TL/W/ /(TH - TL)

Where TL= freezing compartment temperature

TH = Outside air temperature

/QL /= 271 × 1439424 / (310 - 271)

/QL/ = 390083904/39

/QL/ = 10002151.38 Joules

5 0
3 years ago
Read 2 more answers
What is the force required to lift the balloon with
Olin [163]

No force is required to lift that balloon. In fact, force is required to hold it down, and if you let go, it's up, up, and away.

Since the balloon's density is less than the density of the air around it, it's lighter than the air it displaces, there is a net upward buoyant force acting on it, and it floats up !

3 0
3 years ago
A wire along the z axis carries a current of 6.8 A in the z direction Find the magnitude and direction of the force exerted on a
Alexeev081 [22]

Answer:

Force is 14.93N along positive y axis.

Explanation:

We know that force 'F' on a current carrying conductor placed in a magnetic field of intensity B is given by

\overrightarrow{F}=\overrightarrow{Il}\times \overrightarrow{B}

where L is the length of the conductor

Applying values in the equation we have force F =

\overrightarrow{F}=6.8\times 6.1\widehat{k}\times 0.36\widehat{i}\\\\\overrightarrow{F}=41.48\widehat{k}\times 0.36\widehat{i}\\\\\therefore \overrightarrow{F}=14.93N\widehat{j}

Thus force is 14.93N along positive y axis.

3 0
3 years ago
Compare the gravitational acceleration on the following objects compared to the Sun using:
arsen [322]

The gravitational acceleration of White dwarf compared to Sun is 13,675.86.

The gravitational acceleration of Neutron star compared to Sun is 6.79 x 10⁻²⁴.

The gravitational acceleration of Star Betelgeuse compared to Sun is 8.5 x 10¹⁰.

<h3>Mass of the planets</h3>

Mass of sun = 2 x 10³⁰ kg

Mass of white dwarf = 2.765  x 10³⁰ kg

Mass of Neutron star = 5.5 x 10¹² kg

Mass of star Betelgeuse = 2.188 x 10³¹ kg

<h3>Radius of the planets</h3>

Radius of sun = 696,340 km

Radius of white dwarf = 7000 km

Radius of Neutron star = 11 km

Radius of star Betelgeuse = 617.1 x 10⁶ km

<h3>Gravitational acceleration of White dwarf compared to Sun</h3>

\frac{g(star)}{g(sun)} = \frac{M(star)}{M(sun)} \times [\frac{R(sun)}{R(star)} ]^2\\\\\frac{g(star)}{g(sun)} = \frac{2.765 \times 10^{30}}{2\times 10^{30}} \times [\frac{696,340,000}{7,000,000} ]^2\\\\\frac{g(star)}{g(sun)} = 13,675.86

<h3>Gravitational acceleration of Neutron star compared to Sun</h3>

\frac{g(star)}{g(sun)} = \frac{M(star)}{M(sun)} \times [\frac{R(sun)}{R(star)} ]^2\\\\\frac{g(star)}{g(sun)} = \frac{5.5 \times 10^{12}}{2\times 10^{30}} \times [\frac{11,000}{7,000,000} ]^2\\\\\frac{g(star)}{g(sun)} = 6.79\times 10^{-24}

<h3>Gravitational acceleration of Star Betelgeuse compared to Sun</h3>

\frac{g(star)}{g(sun)} = \frac{M(star)}{M(sun)} \times [\frac{R(sun)}{R(star)} ]^2\\\\\frac{g(star)}{g(sun)} = \frac{2.188 \times 10^{31}}{2\times 10^{30}} \times [\frac{617.1 \times 10^9}{7,000,000} ]^2\\\\\frac{g(star)}{g(sun)} = 8.5\times 10 ^{10}

Learn more about acceleration due to gravity here: brainly.com/question/88039

3 0
2 years ago
Regular __________ disturbances that carry<br> energy through matter or space
Anna35 [415]
Yessssssssssssssssssssssss
3 0
3 years ago
Read 2 more answers
Other questions:
  • Similarities in tennis and volleyball
    13·1 answer
  • How do lines of latitude affect how direct or indirect the Sun’s rays are on the Earth?
    13·1 answer
  • The Pinnacles and Neenach volcanics are 23.5 million-year-old andesite to rhyolite outcrops, on either side of the San Andreas F
    14·1 answer
  • The amount of work done to produce a sound determines which property of sound waves? A. amplitude B. frequency C. pitch D. wavel
    7·2 answers
  • a uniform disc and hollow right circular cone have the same formula for their moment of inertia when rotating about the central
    10·1 answer
  • How does an airbag help protect a passenger in a car following a car accident?
    12·2 answers
  • The 49-g arrow is launched so that it hits and embeds in a 1.45 kg block. The block hangs from strings. After the arrow joins th
    5·1 answer
  • PLZZ I WILL DO ANY THING
    13·1 answer
  • Please help. This question is urgent.​
    15·1 answer
  • an 8 kilogram ball is fired horizontally form a 1 times 10^3 kilogram cannon initially at rest after having been fired the momen
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!