I think it’s D-decreases the amount of work.
The right answer is c because it absorbs the heat then it pushes it away like radiation
Answer:
Q₂ = 5833.33 J
Explanation:
First we need to find the energy supplied to the heat engine. The formula for the efficiency of the heat engine is given as:
η = W/Q₁
where,
η = efficiency of engine = 30% = 0.3
W = Work done by engine = 2500 J
Q₁ = Heat supplied to the engine = ?
Therefore,
0.3 = 2500 J/Q₁
Q₁ = 2500 J/0.3
Q₁ = 8333.33 J
Now, we find the heat discharged to lower temperature reservoir by using the formula of work:
W = Q₁ - Q₂
Q₂ = Q₁ - W
where,
Q₂ = Heat discharged to the lower temperature reservoir = ?
Therefore,
Q₂ = 8333.33 J - 2500 J
<u>Q₂ = 5833.33 J</u>
Answer:
Wave speed = 1.25 m/s
Explanation:
Given that the
wavelength = 0.25 m.
Frequency F = 5.0 Hz
The speed of a wave is the product of wave frequency and the wavelength. That is
V = F λ
Where
V = wave speed (m/s)
λ = wavelength (m).
F = frequency (Hz).
Using the formula above gives:
V = 0.25 × 5
V = 1.25 m/s