1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Murljashka [212]
3 years ago
10

A wire 6.60 m long with diameter of 2.05 mm has a resistance of 0.0310 Ω.

Physics
1 answer:
Alex73 [517]3 years ago
6 0

Answer:

1.551×10^-8 Ωm

Explanation:

Resistivity of a material is expressed as shown;.

Resistivity = RA/l

R is the resistance of the material

A is the cross sectional area

l is the length of the wire.

Given;

R = 0.0310 Ω

A = πd²/4

A = π(2.05×10^-3)²/4

A = 0.000013204255/4

A = 0.00000330106375

A = 3.30×10^-6m

l = 6.60m

Substituting this values into the formula for calculating resistivity.

rho = 0.0310× 3.30×10^-6/6.60

rho = 1.023×10^-7/6.60

rho = 1.551×10^-8 Ωm

Hence the resistivity of the material is 1.551×10^-8 Ωm

You might be interested in
A torque of 36.5 N · m is applied to an initially motionless wheel which rotates around a fixed axis. This torque is the result
vivado [14]

Answer:

21.6\ \text{kg m}^2

3.672\ \text{Nm}

54.66\ \text{revolutions}

Explanation:

\tau = Torque = 36.5 Nm

\omega_i = Initial angular velocity = 0

\omega_f = Final angular velocity = 10.3 rad/s

t = Time = 6.1 s

I = Moment of inertia

From the kinematic equations of linear motion we have

\omega_f=\omega_i+\alpha_1 t\\\Rightarrow \alpha_1=\dfrac{\omega_f-\omega_i}{t}\\\Rightarrow \alpha_1=\dfrac{10.3-0}{6.1}\\\Rightarrow \alpha_1=1.69\ \text{rad/s}^2

Torque is given by

\tau=I\alpha_1\\\Rightarrow I=\dfrac{\tau}{\alpha_1}\\\Rightarrow I=\dfrac{36.5}{1.69}\\\Rightarrow I=21.6\ \text{kg m}^2

The wheel's moment of inertia is 21.6\ \text{kg m}^2

t = 60.6 s

\omega_i = 10.3 rad/s

\omega_f = 0

\alpha_2=\dfrac{0-10.3}{60.6}\\\Rightarrow \alpha_1=-0.17\ \text{rad/s}^2

Frictional torque is given by

\tau_f=I\alpha_2\\\Rightarrow \tau_f=21.6\times -0.17\\\Rightarrow \tau=-3.672\ \text{Nm}

The magnitude of the torque caused by friction is 3.672\ \text{Nm}

Speeding up

\theta_1=0\times t+\dfrac{1}{2}\times 1.69\times 6.1^2\\\Rightarrow \theta_1=31.44\ \text{rad}

Slowing down

\theta_2=10.3\times 60.6+\dfrac{1}{2}\times (-0.17)\times 60.6^2\\\Rightarrow \theta_2=312.03\ \text{rad}

Total number of revolutions

\theta=\theta_1+\theta_2\\\Rightarrow \theta=31.44+312.03=343.47\ \text{rad}

\dfrac{343.47}{2\pi}=54.66\ \text{revolutions}

The total number of revolutions the wheel goes through is 54.66\ \text{revolutions}.

3 0
3 years ago
Help please <br> hhjshwjsjejjenrhrhfhhfheisiw
DanielleElmas [232]

Answer:

A

Explanation:

4 0
3 years ago
Fe₂O3<br> + co<br> →<br> Fe3O4 + CO₂
Goryan [66]

Explanation:

                    Fe₂O₃  + CO  → Fe₃O₄ + CO₂

Balancing the equation above, we can derive simple mathematical equations that are very easy to solve.

             aFe₂O₃  + bCO  → cFe₃O₄ + dCO₂

a,b,c and d are the coefficients needed to balance the equation above;

  Conserving Fe; 2a = 3c

                       O: 3a + b = 4c + 2d

                        C: b = d

 let a = 1;

      c = \frac{2}{3}

      Since b = d

                  3a + d = 4c + 2d

                    3a = 4c + 2d - d

                     3a = 4c + d

           a = 1, c = \frac{2}{3}

                    3 = 4 x \frac{2}{3}  +  d

                   d = \frac{1}{3}

                    b = \frac{1}{3}

multiplying a, b, c and d by 3:

            a = 3    b = 1     c = 2   and d = 1

                  3Fe₂O₃  + CO  → 2Fe₃O₄ + CO₂

Learn more:

Balanced equation brainly.com/question/2612756

#learnwithBrainly

6 0
3 years ago
A wave has a wavelength of 4.9 m and a velocity of 9.8 m/s. The medium through which this wave is traveling is then heated so th
garri49 [273]

Answer:

the wavelength is 9.8 meters

Explanation:

We can use the relationship:

Velocity = wavelenght*frequency.

Initially we have:

wavelenght = 4.9m

velocity = 9.8m/s

then:

9.8m/s =  4.9m*f

f = 9.8m/s/4.9m =  2*1/s

now, if the velocity is doubled and the frequency remains the same, we have:

2*9.8m/s = wavelenght*2*1/s

wavelenght = (2*9.8m/s)*(1/2)s = 9.8 m

6 0
3 years ago
Read 2 more answers
A yellow train of mass 100 kg is moving at 8 m/s towards an orange train of mass 200 kg traveling on the opposite direction on t
vladimir1956 [14]
Mass of yellow train, my = 100 kg

Initial Velocity of yellow train, = 8 m/s

mass of orange train = 200 kg

Initial Velocity of orange train = -1 m/s (since it moves opposite direction to the yellow train, we will put negative to show the opposite direction)

To calculate the initial momentum of both trains, we will use the principle of conservation of momentum which

The sum of initial momentum = the sum of final momentum


Since the question only wants the sum of initial momentum,

(100)(8) + (200)(-1) = 600 m/s

8 0
2 years ago
Other questions:
  • What is newstons 2nd law
    8·2 answers
  • When a loop of current-carrying wire turns continuously in a magnetic field, a _________ is created.
    10·1 answer
  • An experiment yielded the above temperature and time information. what is the freezing point of the material in this experiment
    10·1 answer
  • Torque can be calculated by multiplying the force
    5·1 answer
  • Most offshore drilling occurs:
    8·1 answer
  • Give at least two reasons today’s astronomers are so interested in the discovery of additional Earth-approaching asteroids.
    8·1 answer
  • 25000 seconds is how many days?
    9·2 answers
  • Why are bridges built with joints in them?
    8·2 answers
  • EDGE 2021 WILL GIVE BRAINLIEST
    8·1 answer
  • Please answer soon
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!