Answer:
change in internal energy 3.62*10^5 J kg^{-1}
change in enthalapy 5.07*10^5 J kg^{-1}
change in entropy 382.79 J kg^{-1} K^{-1}
Explanation:
adiabatic constant 
specific heat is given as 
gas constant =287 J⋅kg−1⋅K−1

specific heat at constant volume

change in internal energy 

change in enthalapy 

change in entropy



Answer:
The correct answer is a Low earth orbit.
Explanation:
A low earth orbit can be understood as an earth orbit with an altitude of 1,000 miles or less. It is a satellite sustem that employs many satelites, in fact, most man-made objects that are currently in outer-space are part of this low earth orbit. (LEO).
The most famous LEO satellite system is the one from planet earth. Almost every space flight that human beings have ever done are done in LEO, and every spacial station is located in this zone.
In conclusion, A low earth orbit satellite system employs many satellites, each in an orbit at an altitude of less than 1,000 miles.
c) only from warmer areas to colder areas.
The second principle of thermodynamics states that heat can only flow from a hotter body to a cooler one. Specifically, Clausius statement says that is not possible for heat to move by itself from a lower temperature body to a higher temperature body.