1. Amperes, is the SI unit (also a fundamental unit) responsible for current.
2.
Δq over Δt technically
Rearrange for Δq
I x Δt = Δq
1.5mA x 5 = Δq
Δq = 0.0075
Divide this by the fundamental charge "e"
Electrons: 0.0075 / 1.60 x 10^-19
Electrons: 4.6875 x 10^16 or 4.7 x 10^16
3. So we know that the end resistances will be equal so:
ρ = RA/L
ρL = RA
ρL/A = R
Now we can set up two equations one for the resistance of the aluminum bar and one for the copper: Where 1 represents aluminum and 2 represents copper

We are looking for L2 so we can isolate using algebra to get:

If you fill in those values you get 0.0205
or 2.05 cm
The formula for Celsius to Fahrenheit is T(°F)<span> = </span>T(°C)<span> × 1.8 + 32
Your answer would be 68 degrees Fahrenheit</span>
Answer:
you can write some points its an explanation
and similarities. or common
Explanation:
Thermal energy refers to the energy contained within a system that is responsible for its temperature. Heat is the flow of thermal energy. A whole branch of physics, thermodynamics, deals with how heat is transferred between different systems and how work is done in the process (see the 1ˢᵗ law of thermodynamics).
The faster the atoms or molecules move, the more heat or thermal energy they have. ... A hair straightener turns the electrical energy from a wall outlet into heat (thermal energy). 4. As electricity runs through the filaments in a space heater, the electrical energy is converted into heat (thermal energy).
Answer:
V2 = 1.899*10^-3 m^3
T2 = 347.125 K
Explanation:
Using gas law, we know that
PV = nRT,
Where
V1 = 0.00115743 m^3.
gamma = 1.4
Now, when we solve for final volume, V2 we get
V2 = V1/((P2/P1)^(1/gamma))
V2 = 1.899*10^-3 m^3
Using the same law and method, when we try to solve for the temperature, we find that the final temperature, T2 is
T2 = T1*((V1/V2)^(gamma-1))
T2 = 347.125 K
Answer:
Explanation:
Given that,
At one instant,
Center of mass is at 2m
Xcm = 2m
And velocity =5•i m/s
One of the particle is at the origin
M1=? X1 =0
The other has a mass M2=0.1kg
And it is at rest at position X2= 8m
a. Center of mass is given as
Xcm = (M1•X1 + M2•X2) / (M1+M2)
2 = (M1×0 + 0.1×8) /(M1 + 0.1)
2 = (0+ 0.8) /(M1 + 0.1)
Cross multiply
2(M1+0.1) = 0.8
2M1 + 0.2 =0.8
2M1 = 0.8-0.2
2M1 = 0.6
M1 = 0.6/2
M1 = 0.3kg
b. Total momentum, this is an inelastic collision and it momentum after collision is given as
P= (M1+M2)V
P = (0.3+0.1)×5•i
P = 0.4 × 5•i
P = 2 •i kgm/s
c. Velocity of particle at origin
Using conversation of momentum
Momentum before collision is equal to momentum after collision
P(before) = M1 • V1 + M2 • V2
We are told that M2 is initially at rest, then, V2=0
So, P(before) = 0.3V1
We already got P(after) = 2 •i kgm/s in part b of the question
Then,
P(before) = P(after)
0.3V1 = 2 •i
V1 = 2/0.3 •i
V1 = 6 ⅔ •i m/s
V1 = 6.667 •i m/s