1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
algol13
3 years ago
10

QUESTION 6

Physics
2 answers:
earnstyle [38]3 years ago
8 0
I agree with increase
xenn [34]3 years ago
5 0

Answer:

Increase. As the water increases, so will the strawberries if watered evenly throughout

You might be interested in
How to the eath turn
mrs_skeptik [129]

Explanation:

Earth rotates in prograde mation.As viewed from the north pole star Polaris.Earth turns counterclockwise,, the north pole is point in the northern,, Hemisphere where Earth's Axis of rotation meets it's surface

5 0
2 years ago
Read 2 more answers
A 78.5-kg man floats in freshwater with 3.2% of his volume above water when his lungs are empty, and 4.85% of his volume above w
Dima020 [189]

Answer:

A) V_air = 1.295 L

B) Volume is not reasonable

Explanation:

A) Let;

m be total mass of the man

m_p be the mass of the man that pulled out of the water because of the buoyant force that pulled out of the lung

m_3 be the mass above the water with the empty lung

m_5 be the mass above the water with full lung

F_b be the buoyant force due to the air in the lung

V_a be the volume of air inside man's lungs

w_p be the weight that the buoyant force opposes as a result of the air.

Now, we are given;

m = 78.5 kg

m_3 = 3.2% × 78.5 = 2.512 kg

m_5 = 4.85% × 78.5 = 3.80725 kg

Now, m_p = m_5 - m_3

m_p = 3.80725 - 2.512

m_p = 1.29525 kg

From archimedes principle, we have the formula for buoyant force as;

F_b = (m_displaced water)g = (ρ_water × V_air × g)

Where ρ_water is density of water = 1000 kg/m³

Thus;

F_b = w_p = 1.29525 × 9.81

F_b = 12.7064 N

As earlier said,

F_b = (ρ_water × V_air × g)

Thus;

V_air = F_b/(ρ_water × × g)

V_air = 12.7064/(1000 × 9.81)

V_air = 1.295 × 10^(-3) m³

We want to convert to litres;

1 m³ = 1000 L

Thus;

V_air = 1.295 × 10^(-3) × 1000

V_air = 1.295 L

B) From research, the average lung capacity of an adult human being is 6 litres of air.

Thus, the calculated lung volume is not reasonable

4 0
3 years ago
I really need help for this question
yan [13]
A will be the fastest and c the slowest because of the dip it has a is a straight line fastest way to get from a to b is a straight line b is the second fastest and d is last
5 0
3 years ago
What is the best estimate of the frequency of the wave shown below
GrogVix [38]

Answer:

D. 2.5 Hz

Explanation:

Frequency = speed of wave / wavelength

= 335 /140 ( from graph)

= 2.4

5 0
3 years ago
When the play button is pressed, a CD accelerates uniformly from rest to 450 rev/min in 3.0 revolutions. If the CD has a radius
Marina CMI [18]

To solve this problem it is necessary to apply the kinematic equations of angular motion.

Torque from the rotational movement is defined as

\tau = I\alpha

where

I = Moment of inertia \rightarrow \frac{1}{2}mr^2 For a disk

\alpha = Angular acceleration

The angular acceleration at the same time can be defined as function of angular velocity and angular displacement (Without considering time) through the expression:

2 \alpha \theta = \omega_f^2-\omega_i^2

Where

\omega_{f,i} = Final and Initial Angular velocity

\alpha = Angular acceleration

\theta = Angular displacement

Our values are given as

\omega_i = 0 rad/s

\omega_f = 450rev/min (\frac{1min}{60s})(\frac{2\pi rad}{1rev})

\omega_f = 47.12rad/s

\theta = 3 rev (\frac{2\pi rad}{1rev}) \rightarrow 6\pi rad

r = 7cm = 7*10^{-2}m

m = 17g = 17*10^{-3}kg

Using the expression of angular acceleration we can find the to then find the torque, that is,

2\alpha\theta=\omega_f^2-\omega_i^2

\alpha=\frac{\omega_f^2-\omega_i^2}{2\theta}

\alpha = \frac{47.12^2-0^2}{2*6\pi}

\alpha = 58.89rad/s^2

With the expression of the acceleration found it is now necessary to replace it on the torque equation and the respective moment of inertia for the disk, so

\tau = I\alpha

\tau = (\frac{1}{2}mr^2)\alpha

\tau = (\frac{1}{2}(17*10^{-3})(7*10^{-2})^2)(58.89)

\tau = 0.00245N\cdot m \approx 2.45*10^{-3}N\cdot m

Therefore the torque exerted on it is 2.45*10^{-3}N\cdot m

3 0
2 years ago
Other questions:
  • What is the net force necessary for a 1.6 x 103 kg car to accelerate forward at 2.0<br> m/s?
    15·1 answer
  • Which is an example of conduction?
    10·2 answers
  • f the CD rotates clockwise at 500 rpmrpm (revolutions per minute) while the last song is playing, and then spins down to zero an
    5·1 answer
  • _____ bias describes when your likes and dislikes affect how you think about something.
    15·1 answer
  • 20 POINTS!!!! question 4 a, c, g, h from the sheet please answer as fully as possible
    13·1 answer
  • What's the diameter of a dish antenna that will receive 10−20W of power from Voyager at this time? Assume that the radio transmi
    14·1 answer
  • What does HIPAA and FERPA stand for?
    15·2 answers
  • At 0°C, frozen water (ice) changes to liquid water. When an ice cube is placed on something that is warmer than it heat will mov
    12·1 answer
  • ___________is the rate at which electric charges move through a conductor. *
    10·1 answer
  • What is the net displacement of the particle between 0 seconds and 80 seconds
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!