The lateral displacement is I don’t know tbh I think 16.8
How much work in J does the string do on the boy if the boy stands still?
<span>answer: None. The equation for work is W = force x distance. Since the boy isn't moving, the distance is zero. Anything times zero is zero </span>
<span>--------------------------------------... </span>
<span>How much work does the string do on the boy if the boy walks a horizontal distance of 11m away from the kite? </span>
<span>answer: might be a trick question since his direction away from the kite and his velocity weren't noted. Perhaps he just set the string down and walked away 11m from the kite. If he did this, it is the same as the first one...no work was done by the sting on the boy. </span>
<span>If he did walk backwards with no velocity indicated, and held the string and it stayed at 30 deg the answer would be: </span>
<span>4.5N + (boys negative acceleration * mass) = total force1 </span>
<span>work = total force1 x 11 meters </span>
<span>--------------------------------------... </span>
<span>How much work does the string do on the boy if the boy walks a horizontal distance of 11m toward the kite? </span>
<span>answer: same as above only reversed: </span>
<span>4.5N - (boys negative acceleration * mass) = total force2 </span>
<span>work = total force2 x 11 meters</span>
Answer:
To find out what water is made of, it helps to look at its chemical formula, which is H2O. This basically tells us that the water molecule is composed of two elements: hydrogen and oxygen or, more precisely, two hydrogen atoms (H2) and one oxygen atom (O).
Explanation:
Answer:
Explanation:
radius of hoop and the radius of disk is same = R
Let the mass of hoop is M and the mass of disk is M'.
As they reach the bottom of teh surface in same time so they travel equal distance thus, they have same acceleration.
The acceleration is given by

As the acceleration is same so that the moment of inertia is also same.
Moment of inertia of disk = moment of inertia of hoop
1/2 x mass of disk x R² = mass of hoop x R²
So, mass of disk = 2 x mass of hoop
Option (c) is correct.
Answer:
12552 J or 3000 calories
Explanation:
Q = m × c × ∆T
Where;
Q = amount of heat energy (J)
m = mass of water (g)
c = specific heat capacity (4.184 J/g°C)
∆T = change in temperature
For 50mL of water, there are 50g, hence, m = 50g, c = 4.184 J/g°C, initial temperature = 0°C, final temperature = 60°C.
Q = m × c × ∆T
Q = 50 × 4.184 × (60 - 0)
Q = 209.2 × 60
Q = 12552 J
Hence, the amount of heat energy used to heat the water is 12552 J or 3000 calories