Answer:
lymph nodes
tonsils and adenoids
thymus
Explanation:
-Arteries are the blood vessels that take the blood that contains oxygen from the heart to the tissues and are part of the circulatory system.
-Lymph nodes are glands that take care of filtering the fluid that goes through the lympathic system and are also important for the functioning of the immune system.
-Capillaries are blood vessels that connect the veins and arteries and are part of the circulatory system.
-Tonsils and adenoids are located in the throat and they help protect the body from diseases and they are part of immune system and the lympathic system.
-Veins are the vessels that take the blood to the heart and they are part of the circulatory system.
-Thymus is an organ in which the T cells develop and they help protect the body against virus and bacteria and it is part of the immune and lympathic systems.
According to this, cells or organs that are considered to be part of both the immune and lymphatic systems are:
lymph nodes
tonsils and adenoids
thymus
Answer:
D
Explanation:
What it means to be an autotroph is that you make your own food and plants do that by photosynthesis to be a heterotroph is finding food from other sources like autotrophs or even other heterotrophs
Answer:
increase
Explanation:
According to Einstein's photoelectric equation; the energy of a photon striking a metal surface is related to the kinetic energy of the ejected photoelectron by the formula;
KE= hf - hfo
Where h is the planks constant, f and fo refer to the frequency of incident photon and the threshold frequency respectively.
Hence, we can clearly see from the foregoing that the kinetic energy of the ejected photoelectron is proportional to the frequency of the incident photon.
Hence, if the frequency of the incident photon is increased, the kinetic energy of the ejected photoelectron increases also.
Answer:
Temperature is the kinetic energy of the particles of a substance.
Explanation:
The more kinetic energy a particle has the higher it's temperature. In the case of the atmosphere, which is what we are primarily concerned with in Meteorology, we measure this using a mercury thermometer (in certain situations we use an alcohol thermometer and of course modern times have given us things like dewcells and digital thermometers but we always go back to the mercury thermometer for accuracy).
To solve this problem we will apply the concepts related to the Doppler Effect, defined as the change in apparent frequency of a wave produced by the relative movement of the source with respect to its observer. Mathematically it can be written as

Here,
= Frequency of the source
= Speed of the sound
= Speed of source
Now the velocity we have that


Then replacing our values,


Therefore the frequency of the observer is 1047.86Hz