The situation is impossible mainly because we can't see Figure P6.10 .
It would undoubtedly be the same story on an another planet, until we
see the figure and understand what's going on.
Answer:
beat frequency = 13.87 Hz
Explanation:
given data
lengths l = 2.00 m
linear mass density μ = 0.0065 kg/m
String A is under a tension T1 = 120.00 N
String B is under a tension T2 = 130.00 N
n = 10 mode
to find out
beat frequency
solution
we know here that length L is
L = n × ........1
so λ =
and velocity is express as
V = .................2
so
frequency for string A = f1 =
f1 =
f1 =
and
f2 =
so
beat frequency is = f2 - f1
put here value
beat frequency = -
beat frequency = 13.87 Hz
Answer:
4 secs
Explanation:
The first step is to calculate the velocity
V= frequency × wavelength
= 500× 0.2
= 100
Therefore the time can be calculated as follows
= distance/velocity
= 400/100
= 4 secs