1374.75 is the concentration in milligrams per ml of a solution containing 23.5 meq sodium chloride per milliliter.
Concentration in chemistry is calculated by dividing a constituent's abundance by the mixture's total volume.
It is calculated in mg/ml.
The unit of measurement frequently used for electrolytes is the milliequivalent (mEq). This value compares an element's chemical activity, or combining power, to that of 1 mg of hydrogen.
Formula for calculating concentration in mg/ml is
Conc. (mg/ml) = M(eq) /ml × Molecular weight / Valency
Given
M(eq) NaCl/ ml = 23.5
Molecular weight pf NaCl = 58.5 g/mol
Valency = 1
Putting the values into the formula
Conc. (mg/ml) = 23.5 ×58.5/1
= 1374.75 mg/ml
Hence, 1374.75 is the concentration in milligrams per ml of a solution containing 23.5 meq sodium chloride per milliliter.
Learn more about Concentration here brainly.com/question/14500335
#SPJ4
Yes. because equation balances the number of particles.
Answer:
![[H^+]=0.00332M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.00332M)
Explanation:
Hello,
In this case, considering the dissociation of valeric acid as:

Its corresponding law of mass action is:
![Ka=\frac{[H^+][C_5H_9O_2^-]}{[HC_5H_9O_2]}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BH%5E%2B%5D%5BC_5H_9O_2%5E-%5D%7D%7B%5BHC_5H_9O_2%5D%7D)
Now, by means of the change
due to dissociation, it becomes:

Solving for
we obtain:

Thus, since the concentration of hydronium equals
, the answer is:
![[H^+]=x=0.00332M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dx%3D0.00332M)
Best regards.