The molarity of a solution if it tale 12.0 grams of Ca(No3)2 is calculated as below
molarity = moles/volume in liters
moles = mass/molar mass = 12.0 g/ 164 g/mol = 0.073 moles
molarity is therefore = 0.073/0.105 = 0.7 M
E=mc (square) E= mass times capacity squared
Answer:
1. filtration and evaporation
2. i) water is added to the sand and salt mixture
ii) then the mixture is filtrated and so the sand and the salt water was seperated
iii) the salt water is heated with the help of burner until the water gets evaporated
iv) after the water gets evaporated, the salt is remained in the container
3. observation:
- on adding water to the mixture, the salt is completely dissolved in the water
- when filtrated the sand is seperated from the salt water
- now the salt water when heated with the burner until the evaporation, the water is evaporated
- the salt is precipitated and remained in the container
4. cautions:
- while using the burner, we should be cautious with fire
- the container that is heated should be holded with the help of a cloth to avoid heat
Answer : The enthalpy of the reaction is, -2552 kJ/mole
Explanation :
According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
According to this law, the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation. That means the enthalpy change of the overall reaction is the sum of the enthalpy changes of the intermediate reactions.
The given enthalpy of reaction is,

The intermediate balanced chemical reactions are:
(1)

(2)

(3)

(4)

Now we have to revere the reactions 1 and multiple by 2, revere the reactions 3, 4 and multiple by 2 and multiply the reaction 2 by 2 and then adding all the equations, we get :
(when we are reversing the reaction then the sign of the enthalpy change will be change.)
The expression for enthalpy of the reaction will be,



Therefore, the enthalpy of the reaction is, -2552 kJ/mole
Answer:
m(H₂O) = 97,2 g.n(H₂O) = m(H₂O) ÷ M(H₂O).n(H₂O) = 97,2 g ÷ 18
Explanation: