Answer:
V Ta is more reactive, hope this helps!
Answer:
Ka = 4.76108
Explanation:
- CO(g) + 2H2(g) ↔ CH3OH(g)
∴ Keq = [CH3OH(g)] / [H2(g)]²[CO(g)]
[ ]initial change [ ]eq
CO(g) 0.27 M 0.27 - x 0.27 - x
H2(g) 0.49 M 0.49 - x 0.49 - x
CH3OH(g) 0 0 + x x = 0.11 M
replacing in Ka:
⇒ Ka = ( x ) / (0.49 - x)²(0.27 - x)
⇒ Ka = (0.11) / (0.49 - 0.11)² (0.27 - 0.11)
⇒ Ka = (0.11) / (0.38)²(0.16)
⇒ Ka = 4.76108
Answer:
Explanation:
a) For diatomic gas: Translational motion = 3 and rotational motion = 2
∴ Total (internal energy) = 3 + 2 = 5
b) Translational + Rotational + Vibrational = 3 + 2 + 1 = 6
c) Linear molecule
i) Non linear molecule
ii) Monatomic molecule
Answer:
Lithium does form a peroxide as well as an oxide on burning in air and I suspect the low temperature reaction with air forms a significant amount of peroxide.
Given the following equation; Cu + 2AgNO3 = Cu(NO3)2 + 2Ag, 48.97 grams of Cu are needed to react with 262g of AgNO3.
<h3>How to calculate mass of substances?</h3>
The mass of a substance can be calculated using the following steps:
Cu + 2AgNO3 = Cu(NO3)2 + 2Ag
1 mole of Cu react with 2 moles of AgNO3
- Molar mass of AgNO3 = 169.87 g/mol
- Molar mass of Cu = 63.5g/mol
moles of AgNO3 = 262g/169.87g/mol = 1.54mol
1.54 moles of AgNO3 will react with 0.77 moles of Cu.
mass of Cu = 0.77 × 63.5 = 48.97g
Therefore, given the following equation; Cu + 2AgNO3 = Cu(NO3)2 + 2Ag, 48.97 grams of Cu are needed to react with 262g of AgNO3.
Learn more about mass at: brainly.com/question/6876669