Answer:
Mass percent of food dyes = 0.0616%
Explanation:
Given data:
Mass of candy = 47.9 g
Calories = 240
Mass of fat = 10 g
Mass of carbohydrate = 34 g
Mass of protein = 2 g
Mass of food dyes = 29.5 mg
Mass percent of food dyes = ?
Solution:
First of all we will convert the mg into g.
Mass of food dyes = 29.5 mg × 1g /1000 mg = 0.0295 g
Mass percent of food dyes = mass of food dyes / total mass× 100
Now we will put the values.
Mass percent of food dyes = 0.0295 g / 47.9 g × 100
Mass percent of food dyes = 0.000616 × 100
Mass percent of food dyes = 0.0616%
They are two different elements, C. Elements
Let's think, if you have a candle ( that is not blown out ) the physical properties are the candles mass and hence ( hence of the candle is the stiffness of the candle), weight, length, density, surface friction ( force resisting the relative motion of solid surface), and the energy content. You then, need to go to bed, so, therefore, you want to blow the candle out. Once you blow the candle out, the candle is evidently going to have at least a couple of different physical properties, than before it was blown out. The physical properties are a different color, the length of the candle, the texture, you could also apply the mass of the candleholder, and then, the mass of the candleholder and the candle, last but not least, the mass of just the candle. Once you observe the candle, you should be able to plug in those observations into the physical properties. As to, because you asked' what are the physical properties of a candle that has been blown out... We are going to assume that we did observe the candle, and the length of the candle in cm, after being blown out is 30cm. (12 inches; customary). Next, that the color of the candle is the same (let us say the original color is taffy pink). We can then say that the texture of the candle is waxy and the top and smooth as you get to the bottom ( the texture depends on how long the candle was burning, but we are saying that we lit the candle, and then immediately blew the flame out ) . We now have the mass of the candleholder, which will scientificity stay the same. Now, for the mass of the candleholder and the candle, that all depends of how long you let it burn ( remember, we are saying we lit the wick and then immediately blew the fame out ). So, the candle really didn't change is mass, so, therefore, wouldn't affect the mass of the candleholder including the candle. That also goes to the mass of the candle.
Answer:
He conducted an experiment using gold foil and alpha particles.
Explanation:
Ernest Rutherford in 1911 performed the gold foil experiment which provided a better outlook to the structure of the atom. In his experiment, he bombarded a thin gold foil with alpha particles. Most of the alpha particles passed through the gold foil and just a few was deflected back.
This observation led Rutherford to propose the nuclear model of the atom in which an atom has a small positively charged centre and electrons moving round it.