Answer:
The spring constant = 104.82 N/m
The angular velocity of the bar when θ = 32° is 1.70 rad/s
Explanation:
From the diagram attached below; we use the conservation of energy to determine the spring constant by using to formula:


Also;

Thus;

where;
= deflection in the spring
k = spring constant
b = remaining length in the rod
m = mass of the slender bar
g = acceleration due to gravity


Thus; the spring constant = 104.82 N/m
b
The angular velocity can be calculated by also using the conservation of energy;






Thus, the angular velocity of the bar when θ = 32° is 1.70 rad/s
Answer:
Hello your question is incomplete below is the complete question
Calculate Earths velocity of approach toward the sun when earth in its orbit is at an extremum of the latus rectum through the sun, Take the eccentricity of Earth's orbit to be 1/60 and its Semimajor axis to be 93,000,000
answer : V = 1.624* 10^-5 m/s
Explanation:
First we have to calculate the value of a
a = 93 * 10^6 mile/m * 1609.344 m
= 149.668 * 10^8 m
next we will express the distance between the earth and the sun
--------- (1)
a = 149.668 * 10^8
E (eccentricity ) = ( 1/60 )^2
= 90°
input the given values into equation 1 above
r = 149.626 * 10^9 m
next calculate the Earths velocity of approach towards the sun using this equation
------ (2)
Note :
Rc = 149.626 * 10^9 m
equation 2 becomes
(
therefore : V = 1.624* 10^-5 m/s
Answer:
A. it's the only answer that makes sense. if I'm wrong sorry
Momentum describes an object in motion and is determined by the product of two variables: mass and velocity. Mass -- the weight of an object -- is usually measured in kilograms or grams for momentum problems. Velocity is the measure of distance traveled over time and is normally reported in meters per second. Examining the possible changes in these two variables identifies the different effects momentum can have on an object in motion.