Answer:
D) electrons
Explanation:
Moving charges creates magnetic field. So the moving electrons of an atom generate microscopic magnetic field. In an atom the magnetism is destroyed when it has equal no. of electrons spinning in the opposite direction.
In the atoms of iron, cobalt and nickle there are more no. of electrons spinning in the same direction.
Gases, liquids and solids are all made up of atoms, molecules, and/or ions, but the behaviors of these particles differ in the three phases. The following figure illustrates the microscopic differences.
Microscopic view of a gas Microscopic view of a liquid. Microscopic view of a solid.
Microscopic view of a gas. Microscopic view of a liquid. Microscopic view of a solid.
Note that:
Particles in a:
gas are well separated with no regular arrangement.
liquid are close together with no regular arrangement.
solid are tightly packed, usually in a regular pattern.
Particles in a:
gas vibrate and move freely at high speeds.
liquid vibrate, move about, and slide past each other.
solid vibrate (jiggle) but generally do not move from place to place.
Liquids and solids are often referred to as condensed phases because the particles are very close together.
The following table summarizes properties of gases, liquids, and solids and identifies the microscopic behavior responsible for each property.
(a) James has the most momentum which is 294 kgm/s.
(b) The resultant force acting on Basma is 90.78 N.
(c) The time taken for James to stop is 3.2 seconds.
<h3>
Momentum of each person</h3>
Momentum of James: P = mv = 98 x 3 = 294 kgm/s
Momentum of Basma: P = mv = 59 x 4 = 236 kgm/s
<h3>Resultant force of Basma</h3>
F = ma = mv/t = P/t = 236/2.6 = 90.78 N
<h3>Time for James to stop</h3>
F = P/t
t = P/F
t = 294/90.78
t = 3.2 s
Learn more about momentum here: brainly.com/question/7538238
#SPJ1
The correct answer is A because
for every action, there is an equal and opposite reaction.
The statement means that in every interaction, there is a pair of forces acting on the two interacting objects. The size of the forces on the first object equals the size of the force on the second object. The direction of the force on the first object is opposite to the direction of the force on the second object. Forces always come in pairs - equal and opposite action-reaction force pairs.
The size of the forces between you and the planet you're on is
your weight on that planet.
Don't forget that you pull the planet with a force equal to the force
that the planet pulls on you. Your weight on Earth is the same as
the Earth's weight on you !