1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Keith_Richards [23]
3 years ago
5

Two cylindrical resistors are made from the same material. The shorter one has length L, diameter D, and resistance R1. The long

er one has length 8L, diameter 4D, and resistance R2. How do the resistances of these two resistors compare
Physics
1 answer:
nordsb [41]3 years ago
7 0

Answer:

the resistance of the longer one is twice as big as the resistance of the shorter one.

Explanation:

Given that :

For the shorter cylindrical resistor

Length = L

Diameter = D

Resistance = R1

For the longer cylindrical resistor

Length = 8L

Diameter = 4D

Resistance = R2

So;

We all know that the resistance of a given material can be determined by using the formula :

R = \dfrac{\rho L }{A}

where;

A = πr²

R = \dfrac{\rho L }{\pi r ^2}

For the shorter cylindrical resistor ; we have:

R = \dfrac{\rho L }{\pi r ^2}

since 2 r = D

R = \dfrac{\rho L }{\pi (\frac{2}{2 \ r}) ^2}

R = \dfrac{ 4 \rho L }{\pi \ D   ^2}

For the longer cylindrical resistor ; we have:

R = \dfrac{\rho L }{\pi r ^2}

since 2 r = D

R = \dfrac{ \rho (8 ) L }{\pi (\frac{2}{2 \ r}) ^2}

R = \dfrac{32\rho L }{\pi \ (4 D)   ^2}

R = \dfrac{2\rho L }{\pi \ (D)   ^2}

Sp;we can equate the shorter cylindrical resistor to the longer cylindrical resistor as shown below :

\dfrac{R_s}{R_L} = \dfrac{ \dfrac{ 4 \rho L }{\pi \ D   ^2}}{ \dfrac{2\rho L }{\pi \ (D)   ^2}}

\dfrac{R_s}{R_L} ={ \dfrac{ 4 \rho L }{\pi \ D   ^2}}* { \dfrac  {\pi \ (D)   ^2} {2\rho L}}

\dfrac{R_s}{R_L} =2

{R_s}=2{R_L}

Thus; the resistance of the longer one is twice as big as the resistance of the shorter one.

You might be interested in
Can someone please answer how to convert mass into weight?
Rasek [7]

Answer:

To find the weight of something, simply multiply its mass by the value of the local gravitational field, and you get a result in newtons (N). For example, if your mass is 50 kg (about 110 pounds), then your weight is (50) (9.8). The point that must be overwhelmingly emphasized is that weight is a force.

Explanation:

4 0
3 years ago
A _ increases it decreases voltage in a power line
Levart [38]
A transformer increases and decreases voltage.
5 0
3 years ago
A very strong, but inept, shot putter puts the shot straight up vertically with an initial velocity of 11.0 m/s. how long does h
noname [10]
The shot putter should get out of the way before the ball returns to the launch position.

Assume that the launch height is the reference height of zero.
u = 11.0 m/s, upward launch velocity.
g = 9.8 m/s², acceleration due to gravity.

The time when the ball is at the reference position (of zero) is given by
ut - (1/2)gt² = 0
11t - 0.5*9.8t² = 0
t(11 - 4.9t) = 0
t = 0 or t = 4.9/11 =  0.45 s

t = 0 corresponds to when the ball is launched.
t = 0.45 corresponds to when the ball returns to the launch position.

Answer: 0.45 s
7 0
3 years ago
Who clarified the photoelectric effect?
sergiy2304 [10]
When visible light, X rays, gamma rays, or other forms of electromagnetic radiation are shined on certain kinds of matter, electrons are ejected. That phenomenon is known as the photoelectric effect. The photoelectric effect was discovered by German physicist Heinrich Hertz (1857–1894) in 1887. You can imagine the effect as follows: Suppose that a metal plate is attached by two wires to a galvanometer. (A galvanometer is an instrument for measuring the flow of electric current.) If light of the correct color is shined on the metal plate, the galvanometer may register a current. That reading indicates that electrons have been ejected from the metal plate. Those electrons then flow through the external wires and the galvanometer. HOPE THIS HELPED
7 0
4 years ago
Two electrons are initially at rest separated by a distance of 2nm. At time t=0, they start to move apart due to Coulombic repul
Gnom [1K]

Answer:

t=2.5\times 10^{-14}\ s

Explanation:

We know that charge on electron

q=1.6\times 10^{-19}\ C

r= 2 nm

We know that force between two charge given

F=K\dfrac{Q_1Q_2}{r^2}

Now by putting the value

F=9\times10^9\dfrac{1.6\times 10^{-19}\times 1.6\times 10^{-19}}{(2\times 10^{-9})^2}

F=5.67\times 10^{-11}\ N

We know that mass of electron

The mass of electron

m=9.1\times 10^{-31}\ kg

F= m a

a= Acceleration of electron

a= F/m

a=\dfrac{5.67\times 10^{-11}}{9.1\times 10^{-31}}\ m/s^2

a=6.2\times 10^{19} m/s^2

S=ut+\dfrac{1}{2}at^2

initial velocity given that zero ,u=0

20\times 10^{-9}=\dfrac{1}{2}\times 6.2\times 10^{19} t^2

t=\sqrt {\dfrac{40\times 10^{-9}}{6.2\times 10^{19}}}

t=2.5\times 10^{-14}\ s

3 0
3 years ago
Other questions:
  • Kevin can text 44 words in 8 minutes. At this rate, how many minutes would it take
    15·1 answer
  • A car has a mass of 1 200 kg. A very strong weightlifter attempts, unsuccessfully, to lift the car by applying an upward force o
    5·1 answer
  • A ___ is one way a star might die and it can trigger the beginning of a new stars life cycle .
    11·1 answer
  • A jet airplane flying from Darwin, Australia, has an air speed of 260 m/s in a direction 5.0º south of west. It is in the jet st
    13·1 answer
  • The Northern Hemisphere has summer when...
    13·1 answer
  • You serve a tennis ball from a height of 1.80 m above the ground. The ball leaves your racket with a velocity of 18.0 m/s at an
    11·1 answer
  • What are the<br>2 factors that<br>increase the<br>electric force<br>between<br>objects?​
    8·1 answer
  • 1. Compare and Contrast microwaves with visible light using wavelength, frequency and energy
    9·1 answer
  • PLZZ HELP ASAP WILL MARK BRAINLIEST
    10·2 answers
  • How are transverse and longitudinal waves the same?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!