Between the bumps and dips of two surfaces. SO the answer is 2 surfaces. Hope this helps! :)
Answer:5.13333333...
Explanation: 7.7 is the distance and an hour and a half is the average speed. You would have to divide the total distance by the total time. So it would be 7.7 divided by 1.5 which would equal 5.13333333333...
Answer:
a) V = k 2π σ (√(b² + x²) - √ (a² + x²))
,
b) E = - k 2π σ x (1 /√(b² + x²) - 1 /√(a² + x²))
Explanation:
a) The expression for the electric potential is
V = k ∫ dq / r
For this case, consider the disk formed by a series of concentric rings of radius r and width dr, the distance of each ring to point P
R = √(x² + r²)
The charge on a ring is
σ = dq / dA
The area of a ring is
A = π r
dA = 2π r dr
So the charge is
dq = σ 2π r dr
We substitute
V = k σ 2pi ∫ r dr / √(r² + x²)
We integrate
V = k 2π σ √(r² + x²)
We evaluate from the lower limit r = a to the upper limit r = b
V = k 2π σ (√(b² + x²) - √ (a² + x²))
b) the electric field and the potential are related
E = - dV / dx
E = - k 2π σ (1/2 2x /√(b² + x²) - ½ 2x /√(a² + x²))
E = - k 2π σ x (1 /√(b² + x²) - 1 /√(a² + x²))
Answer:
Explanation:
At the time of a body achieving terminal velocity, the drag force becomes equal to the weight of the body less the buoyant force by the surrounding medium which can be represented by the following equation

Where r is radius of the body , d is density of the material of the body σ is density of the medium and n is coefficient of viscosity of the medium and v is terminal velocity.
Simplifying
v = 
Assuming the value of density of air as 1.225 kg/m³ and putting other given values in the formula we get
v =
[/tex]
v = 387 x 10⁻⁵ m/s
Terminal velocity = 387 x 10⁻⁵ m/s
Time taken to fall a distance of 100 m
= 
= 2.6 x 10⁴ s.