Answer:
a. the mole fraction of CO in the mixture of CO and O2.
mole fraction = moles of CO/ Total moles of the mixture
Mole fraction of CO = 10/(10+12.5)=0.444
b. Reaction - CO(g)+½O2(g)→CO2(g)
Stoichiometry: 1 mole of CO react with 0.5mole of O2 to give 1 mole of CO2
So given,
At a certain point in the heating, 3.0 mol CO2 is present. Determine the mole fraction of CO in the new mixture.
3mol of CO2 is produced from 3 mols of CO and 1.5mol of O2
This means that unused mols are : 7mols of CO and 11mols of O2
Total product mixture = 3 + 7 + 11 = 21mols
mole fraction of CO = 7/21 = 0.33
The correct answer is Thermal Equilibrium
Explanation:
The term "thermal equilibrium" is used when two or more objects have the same temperature and therefore there is not an exchange of heat between them. This occurs when the objects had a different temperature at the beginning but due to a close contact heat is transferred from one object to the other until an equilibrium or same temperature is reached. For example, a hot cup over a table or any other surface will transfer the heat to the surface, but after some time both the cup and the surface will have the same temperature or will reach thermal equilibrium.
Answer:
Explanation:
a) In an exothermic reaction, the energy transferred to the surroundings from forming new bonds is ___more____ than the energy needed to break existing bonds.
b) In an endothermic reaction, the energy transferred to the surroundings from forming new bonds is ___less____ than the energy needed to break existing bonds.
c) The energy change of an exothermic reaction has a _____negative_______ sign.
d) The energy change of an endothermic reaction has a ____positive________ sign.
The energy changes occur during the bonds formation and bonds breaking.
There are two types of reaction endothermic and exothermic reaction.
Endothermic reactions:
The type of reactions in which energy is absorbed are called endothermic reactions.
In this type of reaction energy needed to break the bond are higher than the energy released during bond formation.
For example:
C + H₂O → CO + H₂
ΔH = +131 kj/mol
it can be written as,
C + H₂O + 131 kj/mol → CO + H₂
Exothermic reaction:
The type of reactions in which energy is released are called exothermic reactions.
In this type of reaction energy needed to break the bonds are less than the energy released during the bond formation.
For example:
Chemical equation:
C + O₂ → CO₂
ΔH = -393 Kj/mol
it can be written as,
C + O₂ → CO₂ + 393 Kj/mol
Answer: The pressure of a gas will increase when there is a decrease in the volume of the gas.
Explanation: according to Boyle's law, the volume of a gas will decrease when the pressure is increased at constant temperature and vice versa.
N = 4 moles of Ar2, P = 1.90 atm, V = ?
T = 50C = 273 + 50K = 323K
PV = nRT --> V = nRT/P
V = (4)(.0821)(323)/1.90
V = 106.07/ 1.9
V = 55.8 L