1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IrinaK [193]
3 years ago
5

A roller coaster is traveling at 13 m/s when it approaches a hill that is 400 m long. Heading down the hill, it accelerates at 4

.0 m/s2. What is the final velocity of the roller coaster?
Physics
1 answer:
SIZIF [17.4K]3 years ago
5 0

Answer:

The  value is    v = 47 \  m/s

Explanation:

From the question we are told that

   The initial  speed of the roller coaster is u =  13 \  m/s

    The  length of the hill is  l   = 400 \  m

    The  acceleration of the  roller coaster is a=4.0 \ m/s^2

Generally the acceleration is mathematically represented as

      a =  \frac{ v - u}{ t_f -  t_i }

Here  t_i is the initial time which is equal to zero

         v_f is the final velocity which is mathematically represented as

          v_f  =  \frac{d}{ t_f}

So  

     a =  \frac{ \frac{d}{d_f}  - u }{ t_f - t_i}

     4 = \frac{\frac{400}{ t_f}  - 13}{t_f - 0}

      4 =  \frac{400 - 13t_f}{ t_f} *  \frac{1}{t_f}

     4t_f ^2  +13f  + 400 =

Solving this using quadratic formula we obtain

    t_f =  8.5 \ s

     t_f =  -11.8 \ s

Generally  time cannot be negative so

       t_f =  8.5 \ s

Generally the  final velocity is mathematically represented as

         v = \frac{400}{8.5}

         v = 47 \  m/s

       

You might be interested in
If you push any floating object down from equilibrium and release it, it bobs up and down. That looks like an oscillation, so le
GarryVolchara [31]

Answer:

  F_{y} = ( ρ_fluid g A) y

Explanation:

This exercise can be solved in two parts, the first finding the equilibrium force and the second finding the oscillating force

for the first part, let's write Newton's equilibrium equation

        B₀ - W = 0

        B₀ = W

        ρ_fluid g V_fluid = W

the volume of the fluid is the area of ​​the cube times the height it is submerged

      V_fluid = A y  

For the second part, the body introduces a quantity and below this equilibrium point, the equation is

        B - W = m a

        ρ_fluid g A (y₀ + y) - W = m a

        ρ_fluid g A y + (ρ_fluid g A y₀ -W) = m a

       ρ_fluid g A y + (B₀-W) = ma

the part in parentheses is zero since it is the force when it is in equilibrium

      ρ_fluid g A y = m a

      this equation the net force is

      F_{y} = ( ρ_fluid g A) y

we can see that this force varies linearly the distance and measured from the equilibrium position

8 0
3 years ago
A 1300 kg steel beam is supported by two ropes. (Figure
Dmitriy789 [7]

Relative to the positive horizontal axis, rope 1 makes an angle of 90 + 20 = 110 degrees, while rope 2 makes an angle of 90 - 30 = 60 degrees.

By Newton's second law,

  • the net horizontal force acting on the beam is

R_1 \cos(110^\circ) + R_2 \cos(60^\circ) = 0

where R_1,R_2 are the magnitudes of the tensions in ropes 1 and 2, respectively;

  • the net vertical force acting on the beam is

R_1 \sin(110^\circ) + R_2 \sin(60^\circ) - mg = 0

where m=1300\,\rm kg and g=9.8\frac{\rm m}{\mathrm s^2}.

Eliminating R_2, we have

\sin(60^\circ) \bigg(R_1 \cos(110^\circ) + R_2 \cos(60^\circ)\bigg) - \cos(60^\circ) \bigg(R_1 \sin(110^\circ) + R_2 \sin(60^\circ)\bigg) = 0\sin(60^\circ) - mg\cos(60^\circ)

R_1 \bigg(\sin(60^\circ) \cos(110^\circ) - \cos(60^\circ) \sin(110^\circ)\bigg) = -\dfrac{mg}2

R_1 \sin(60^\circ - 110^\circ) = -\dfrac{mg}2

-R_1 \sin(50^\circ) = -\dfrac{mg}2

R_1 = \dfrac{mg}{2\sin(50^\circ)} \approx \boxed{8300\,\rm N}

Solve for R_2.

\dfrac{mg\cos(110^\circ)}{2\sin(50^\circ)} + R_2 \cos(60^\circ) = 0

\dfrac{R_2}2 = -mg\cot(110^\circ)

R_2 = -2mg\cot(110^\circ) \approx \boxed{9300\,\rm N}

8 0
1 year ago
Based on the data given, in what direction will the car accelerate?
skad [1K]
Vertical forces:
There is a force of 579N acting upward, and a force of 579N
acting downward.
The vertical forces are balanced ... they add up to zero ...
so there's no vertical acceleration. 
Not up, not down.

Horizontal forces:
There is a force of 487N acting to the left, and a force of 632N
acting to the right.
The net horizontal force is

        (487-left + 632-right)  -  (632-right - 487-right) =  145N to the right.

The net force on the car is all to the right.
The car accelerates to the right.
7 0
3 years ago
Question 2 of 20
alukav5142 [94]

Answer: a

Explanation: because i said so

8 0
2 years ago
Please help! Urgent!!! My teacher wants us to make something about energy. For instance define Kinetic energy. Then we need to b
JulsSmile [24]
You could do something about Einstein's theory of energy... it seems like it would be a simple and easy project. E=mc^2
8 0
3 years ago
Other questions:
  • A parallel plate flow chamber is being designed to study the adhesion of leukocytes to endothelium. The channel width is 2cm; th
    11·1 answer
  • As a rocket travels upward from earth, air resistance decreases along with the force of gravity. The rocket's mass also decrease
    15·1 answer
  • SOMEONE HELP ME!!!!!
    11·2 answers
  • Why does the light from the touch reach upto only certain distance
    6·1 answer
  • An atom that changes so that it has an<br> electrical charge is a(n)
    8·1 answer
  • If you had to explain to a non-scientist why it is that scientists accept the idea that all material things are composed of atom
    14·1 answer
  • The PVT behavior of a certain gas is described by the equation of state: P(V − b) = RT where b is a constant. If in addition CV
    10·1 answer
  • What is the ostrich’s average acceleration from 9.0 to 18s
    15·1 answer
  • An electron experiences a force of magnitude F when it is 5 cm from a very long, charged wire with linear charge density, lambda
    14·1 answer
  • If a body is accelerating m change the velocity of 2 metre per second square when it was acted by five hundred Newton of force t
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!