Answer:
The value is ![v = 47 \ m/s](https://tex.z-dn.net/?f=v%20%3D%2047%20%5C%20%20m%2Fs)
Explanation:
From the question we are told that
The initial speed of the roller coaster is ![u = 13 \ m/s](https://tex.z-dn.net/?f=u%20%3D%20%2013%20%5C%20%20m%2Fs)
The length of the hill is ![l = 400 \ m](https://tex.z-dn.net/?f=l%20%20%20%3D%20400%20%5C%20%20m)
The acceleration of the roller coaster is ![a=4.0 \ m/s^2](https://tex.z-dn.net/?f=a%3D4.0%20%5C%20m%2Fs%5E2)
Generally the acceleration is mathematically represented as
![a = \frac{ v - u}{ t_f - t_i }](https://tex.z-dn.net/?f=a%20%3D%20%20%5Cfrac%7B%20v%20-%20u%7D%7B%20t_f%20-%20%20t_i%20%7D)
Here
is the initial time which is equal to zero
is the final velocity which is mathematically represented as
![v_f = \frac{d}{ t_f}](https://tex.z-dn.net/?f=v_f%20%20%3D%20%20%5Cfrac%7Bd%7D%7B%20t_f%7D)
So
![a = \frac{ \frac{d}{d_f} - u }{ t_f - t_i}](https://tex.z-dn.net/?f=a%20%3D%20%20%5Cfrac%7B%20%5Cfrac%7Bd%7D%7Bd_f%7D%20%20-%20u%20%7D%7B%20t_f%20-%20t_i%7D)
![4 = \frac{\frac{400}{ t_f} - 13}{t_f - 0}](https://tex.z-dn.net/?f=4%20%3D%20%5Cfrac%7B%5Cfrac%7B400%7D%7B%20t_f%7D%20%20-%2013%7D%7Bt_f%20-%200%7D)
![4 = \frac{400 - 13t_f}{ t_f} * \frac{1}{t_f}](https://tex.z-dn.net/?f=4%20%3D%20%20%5Cfrac%7B400%20-%2013t_f%7D%7B%20t_f%7D%20%2A%20%20%5Cfrac%7B1%7D%7Bt_f%7D)
![4t_f ^2 +13f + 400 =](https://tex.z-dn.net/?f=4t_f%20%5E2%20%20%2B13f%20%20%2B%20400%20%3D)
Solving this using quadratic formula we obtain
![t_f = 8.5 \ s](https://tex.z-dn.net/?f=t_f%20%3D%20%208.5%20%5C%20s)
![t_f = -11.8 \ s](https://tex.z-dn.net/?f=t_f%20%3D%20%20-11.8%20%5C%20s)
Generally time cannot be negative so
![t_f = 8.5 \ s](https://tex.z-dn.net/?f=t_f%20%3D%20%208.5%20%5C%20s)
Generally the final velocity is mathematically represented as
![v = \frac{400}{8.5}](https://tex.z-dn.net/?f=v%20%3D%20%5Cfrac%7B400%7D%7B8.5%7D)
![v = 47 \ m/s](https://tex.z-dn.net/?f=v%20%3D%2047%20%5C%20%20m%2Fs)