Answer:
= ( ρ_fluid g A) y
Explanation:
This exercise can be solved in two parts, the first finding the equilibrium force and the second finding the oscillating force
for the first part, let's write Newton's equilibrium equation
B₀ - W = 0
B₀ = W
ρ_fluid g V_fluid = W
the volume of the fluid is the area of the cube times the height it is submerged
V_fluid = A y
For the second part, the body introduces a quantity and below this equilibrium point, the equation is
B - W = m a
ρ_fluid g A (y₀ + y) - W = m a
ρ_fluid g A y + (ρ_fluid g A y₀ -W) = m a
ρ_fluid g A y + (B₀-W) = ma
the part in parentheses is zero since it is the force when it is in equilibrium
ρ_fluid g A y = m a
this equation the net force is
= ( ρ_fluid g A) y
we can see that this force varies linearly the distance and measured from the equilibrium position
Relative to the positive horizontal axis, rope 1 makes an angle of 90 + 20 = 110 degrees, while rope 2 makes an angle of 90 - 30 = 60 degrees.
By Newton's second law,
- the net horizontal force acting on the beam is

where
are the magnitudes of the tensions in ropes 1 and 2, respectively;
- the net vertical force acting on the beam is

where
and
.
Eliminating
, we have





Solve for
.



Vertical forces:
There is a force of 579N acting upward, and a force of 579N
acting downward.
The vertical forces are balanced ... they add up to zero ...
so there's no vertical acceleration.
Not up, not down.
Horizontal forces:
There is a force of 487N acting to the left, and a force of 632N
acting to the right.
The net horizontal force is
(487-left + 632-right) - (632-right - 487-right) = 145N to the right.
The net force on the car is all to the right.
The car accelerates to the right.
Answer: a
Explanation: because i said so
You could do something about Einstein's theory of energy... it seems like it would be a simple and easy project. E=mc^2