First, we will use the general gas formula to get the number of moles.
PV = nRT where:
P is the pressure of gas = 751 mmHg = 100125.096375 Pascal
V is the volume = 1 liter = 0.001 m^3
n is the number of moles we want to calculate
R is the gas constant = <span>8.314 J/(K. </span>mol<span>)
T is the temperature = 31 degrees celcius = </span>304.15 degree kelvin
Substitute in the above equation to get the number of moles as follows:
100125.096375 * 0.001 = n * 8.314 * 304.15
n = 0.039595 moles
Now, we will use the number of moles to get the mass as follows:
number of moles = mass / molar mass
mass = number of moles * molar mass
number of moles = 0.039595 moles
molar mass of ammonia (NH3) = 14 + 3(1) = 17 grams
Substitute to get the mass as follows:
mass = 0.039595 * 17 = 0.673122 grams
Last step is to get the density as follows:
density = mass / volume
mass = 0.673122 grams
volume = 1 liter
density = 0.673122 / 1 = 0.673122 grams/liter = <span>0.000675 kg/L</span>
Answer:
1) The correct answer is option b.
2) The correct answer is option a.
Explanation:
1)

At 300 K, the value of the 
The
and
is related by :

where,
= equilibrium constant at constant pressure
= equilibrium concentration constant
R = gas constant = 0.0821 L⋅atm/(K⋅mol)
T = temperature = 300 K
= change in the number of moles of gas = 1 - 2 = -1
Now put all the given values in the above relation, we get:


The
of the reaction = 24.63
Given = [X] = [Y] = [Z] = 1.0 M
Value of reaction quotient = Q
![Q=\frac{[Z]}{[X][Y]}=\frac{1.0 M}{1.0M\times 1.0 M}=1](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BZ%5D%7D%7B%5BX%5D%5BY%5D%7D%3D%5Cfrac%7B1.0%20M%7D%7B1.0M%5Ctimes%201.0%20M%7D%3D1)
, the equilibrium will move in forward direction that is in the right direction.
2)

At 300 K, the value of the 
Given = 
Value of reaction quotient in terms of partial pressure = 


the equilibrium will move in backword direction that is in the left direction.
The pH meter can only be used to differentiate between weak and strong acids providing that the concentrations are known. However, it is convenient to determine the concentration of an acid (or base) by titration.
Answer:
C
Explanation:
C is the only answer that is affected by the color of the wings.