Answer:
beryllium iodide has a molar mass of 262.821 g mol−1 , which means that 1 mole of beryllium iodide has a mass of 262.821 g . To find the mass of 0.02 moles of beryllium iodide, simply multiply the number of moles by the molar mass in conversion factor form.
Explanation:
Answer:
Q = 1455.12 Joules.
Explanation:
Given the following data;
Mass = 300 grams
Initial temperature = 22.3
Final temperature = 59.9°C
Specific heat capacity = 0.129 J/gºC.
To find the quantity of energy;
Where,
Q represents the heat capacity.
m represents the mass of an object.
c represents the specific heat capacity of water.
dt represents the change in temperature.
dt represents the change in temperature.
dt = T2 - T1
dt = 59.9 - 22.3
dt = 37.6°C
Substituting the values into the equation, we have;
Q = 1455.12 Joules.
It seems like the answer would be supporting services.
It is reacting as a chemical reaction .
Answer:
33.95 grams of NaN3
Explanation:
Number of moles of NaN3 = mass (m)/MW = m/65 mole
I mole of NaN3 requires 22.4L air bag
m/65 mole of NaN3 required 11.7L
22.4m/65 = 11.7
22.4m = 65×11.7
22.4m = 760.5
m = 760.5/22.4 = 33.95grams of NaN3