Answer:
255.51cm3
Explanation:
Data obtained from the question include:
V1 (initial volume) =?
T1 (initial temperature) = 50°C = 50 + 273 = 323K
T2 (final temperature) = - 5°C = - 5 + 237 = 268K
V2 (final volume) = 212cm3
Using the Charles' law equation V1/T1 = V2/T2, the initial volume of the gas can be obtained as follow:
V1/T1 = V2/T2
V1/323 = 212/268
Cross multiply to express in linear form
V1 x 268 = 323 x 212
Divide both side by 268
V1 = (323 x 212)/268
V1 = 255.51cm3
Therefore, the initial volume of the gas is 255.51cm3
Answer: A barrier should be created to overcome the atmosphere of the Venus, while launching spacecraft to Venus.
Explanation:
The atmosphere of Venus consists of 96.5% carbon dioxide, other composition includes nitrogen and other gases in trace amounts. The large amount of carbon dioxide in the atmosphere can extinguish the missile of the launcher of spacecraft thus it will become difficult in launch of spacecraft to the Venus.
Answer:
Mass of sea food = 30.98 Kg
Mass of sea food in pound = 68.31 lbs
Explanation:
Salmon, crab and oysters all are sea food.
Mass of sea food = Mass of salmon + Mass of crab + mass of oyster
Mass of salmon = 22 kg
Mass of crab = 5.5 kg
Mass of oysters = 3.48 kg
Mass of sea food = Mass of salmon + Mass of crab + mass of oyster
= 22 + 5.5 + 3.48
= 30.98 Kg
1 Kg = 2.205 lbs
Therefore, 30.98 kg = 30.98 × 2.205
= 68.31 lbs
Answer:
Heat flux = 13.92 W/m2
Rate of heat transfer throug the 3m x 3m sheet = 125.28 W
The thermal resistance of the 3x3m sheet is 0.0958 K/W
Explanation:
The rate of heat transfer through a 3m x 3m sheet of insulation can be calculated as:

The heat flux can be defined as the amount of heat flow by unit of area.
Using the previous calculation, we can estimate the heat flux:

It can also be calculated as:

The thermal resistance can be expressed as

For the 3m x 3m sheet, the thermal resistance is

M=43lb = 19,5kg
If 115mg --------- is for --------- 1kg
so
x ---------- is for --------- 19,5kg
x = 19,5kg * 115mg / 1kg
x = 2242,5 mg