Complete Question:
A chemist prepares a solution of silver (I) perchlorate (AgCIO4) by measuring out 134.g of silver (I) perchlorate into a 50.ml volumetric flask and filling the flask to the mark with water. Calculate the concentration in mol/L of the silver (I) perchlorate solution. Round your answer to 2 significant digits.
Answer:
13 mol/L
Explanation:
The concentration in mol/L is the molarity of the solution and indicates how much moles have in 1 L of it. So, the molarity (M) is the number of moles (n) divided by the volume (V) in L:
M = n/V
The number of moles is the mass (m) divided by the molar mass (MM). The molar mass of silver(I) perchlorate is 207.319 g/mol, so:
n = 134/207.319
n = 0.646 mol
So, for a volume of 50 mL (0.05 L), the concentration is:
M = 0.646/0.05
M = 12.92 mol/L
Rounded to 2 significant digits, M = 13 mol/L
An increase in the atmospheric concentrations of greenhouse gases produces a positive climate forcing, or warming effect. From 1990 to 2015, the total warming effect from greenhouse gases added by humans to the Earth's atmosphere increased by 37 percent.
<h3><u>Answer;</u></h3>
<em><u> = 48,828.125 mi/hr²</u></em>
<h3><u>Explanation and solution</u>;</h3>
- <em><u>Centripetal acceleration is the rate of change of angular velocity. Centripetal acceleration occurs towards the center of the circular path along the radius of the circular path</u></em>.
- Centripetal acceleration is given by; <em>V²/r ; </em>
<em>V = 125 mi/h and r = 0.320 miles </em>
- <em>Thus; centripetal acceleration = 125²/0.320 </em>
=15625/0.320
<em><u> = 48,828.125 mi/hr²</u></em>
The given solution of Mn²⁺ is 0.60 mg/mL.
Hence mass of Mn²⁺ in 5 mL of solution = 0.60 mg/mL x 5 mL = 3 mg
Molar mass of Mn = 54.9 g/mol
Hence, moles of Mn²⁺ = 3 x 10⁻³ g / 54.9 g/mol = 5.46 x 10⁻⁵ mol
The balanced equation for the reaction is,
2Mn²⁺ + 5KIO₄ + 3H₂O → 2MnO₄⁻ + 5KIO₃ + 6H⁺
The stoichiometric ratio between Mn²⁺ and KIO₄ is 2 : 5
Hence, moles of KIO₄ reacted = 5.46 x 10⁻⁵ mol x (5 / 2)
= 13.65 x 10⁻⁵ mol
Molar mass of KIO₄ = 230 g/mol
Hence needed mass of KIO₄ = 13.65 x 10⁻⁵ mol x 230 g/mol
= 0.031395 g
= 31.395 mg
≈ 31.4 mg