The specific gravity of a sample is the ratio of the density of the sample with respect to one standard sample. The standard sample used in specific gravity calculation is water whose density is 1 g/mL. The solution having specific gravity 1.30 is the density of the sample that is 1.30 g/mL. Thus the weight of the 30 mL sample is (30×1.30) = 39 g.
Now the mass of the 10 mL of water is 10 g as density of water is 10 g/mL. Thus after addition the total mass of the solution is (39 + 10) = 49g and the volume is (30 + 10) = 40 mL. Thus the density of the mixture will be
g/mL. Thus the specific gravity of the mixed sample will be 1.225 g/mL.
They have a mass for the particles
There are no totally elastic collisions
There are intermolecular forces
Answer:
90.35 × 10²³ atoms
Solution:
1 molecules of H20 contains 3 atoms,.
And we know that one mole of any molecule contains 6.023 × 10²³ atoms from Avogadro's number,
hence 5 moles of H20 will contain = 5× 6.023 × 10²³ × 3 atoms = 90.35 × 10²³ atoms!
<em><u>Thanks for joining brainly community!</u></em>