A covalent bond involves: <u>d. sharing electrons</u>
The atoms of a molecule are held together by electrical forces that hold the atoms together, this is due to the electrical attraction between the electrons of the atom of one element and the nucleus of the other atom, this force of attraction is called covalent bond.
A covalent bond involves the sharing of electrons that are in the last energy layer of the atoms because they are the most likely or willing to be shared.
An example of a covalent bond is the bond between a hydrogen atom and a carbon atom in methane.
<h3>What is an atom?</h3>
The atom is the smallest part of the composition of matter, it is indivisible and is composed of a nucleus that has protons and neutrons, and around the nucleus there are the electrons.
The correct appropriate will be Option 1 (Acid anhydrides are less stable than esters so the equilibrium favors the ester product.)
Explanation:
Acid anhydride, instead of just a carboxyl group, is typically favored for esterification. The predominant theory would be that Anhydride acid is somewhat more volatile than acid. This is favored equilibrium changes more toward the right of the whole ester structure.
Extremely responsive than carboxylic acid become acid anhydride as well as acyl chloride. Thus, for esterification, individuals were most favored.
The other options offered are not relevant to something like the scenario presented. So, the solution here is just the right one.
The question is incomplete. The complete question is :
In science, we like to develop explanations that we can use to predict the outcome of events and phenomena. Try to develop an explanation that tells how much NaOH needs to be added to a beaker of HCl to cause the color to change. Your explanation can be something like: The color change will occur when [some amount] of NaOH is added because the color change occurs when [some condition]. The goal for your explanation is that it describes the outcome of this example, but can also be used to predict the outcome of other examples of this phenomenon. Here's an example explanation: The color of the solution will change when 40 ml of NaOH is added to a beaker of HCl because the color always changes when 40ml of base is added. Although this explanation works for this example, it probably won't work in examples where the flask contains a different amount of HCl, such as 30ml. Try to make an explanation that accurately predicts the outcome of other versions of this phenomenon.
Solution :
Consider the equation of the reaction between NaOH and
NaOH (aq) + HCl (aq) → NaCl(aq) +
The above equation tells us that of reacts with of .
So at the equivalence point, the moles of NaOH added = moles of present.
If the volume of the taken = mL and the conc. of = mole/L
The volume of NaOH added up to the color change = mole/L
Moles of taken = moles.
The color change will occur when the moles of NaOH added is equal to the moles of taken.
Thus when
or when
or mL of NaOH added, we observe the color change.
Where are the volume and molarity of the taken.
is the molarity of NaOH added.
When both the NaOH and are of the same concentrations, i.e. if , then
Or the 40 mL of will need 40 mL of NaOH for a color change and
30 mL of would need 30 mL of NaOH for the color change (provided the concentration )