Answer:
Carbonated drinks in cans have a headspace to avoid explosion
Explanation:
- When we see in carbonated drinks in cans we can see there is a small amount of space above the liquid level known as the headspace. This space is not a wasted space. The gas filled in the can is compressed highly which when opened comes out with a high pressure with an explosion.
- Therefore, to avoid the carbonated drinks not to explode when shaken the carbonated drinks and the bottled juices have headspace. This means the headspace is not wasted.
Answer:
29.42 Litres
Explanation:
The general/ideal gas equation is used to solve this question as follows:
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (K
According to the information provided in this question;
mass of nitrogen gas (N2) = 25g
Pressure = 0.785 atm
Temperature = 315K
Volume = ?
To calculate the number of moles (n) of N2, we use:
mole = mass/molar mass
Molar mass of N2 = 14(2) = 28g/mol
mole = 25/28
mole = 0.893mol
Using PV = nRT
V = nRT/P
V = (0.893 × 0.0821 × 315) ÷ 0.785
V = 23.09 ÷ 0.785
V = 29.42 Litres
Answer:
Answers are C, D
Explanation:
Solid particles always stick together no matter what happens unless it is changing into a liquid. If you are talking about vibration for solid particles that only applies to thermal vibratio so not A. They do not slide past each other because they are packed very tightly together. They have a definite shape and volume because they stay together unless facing heat. Hopefully this helps you :)
pls mark brainlest ;)
Explanation:
The Order of Reaction refers to the power dependence of the rate on the concentration of each reactant.
The overall order of reaction is the sum of the individual orders of reaction with respect to the reactants.
Rate = k [A]²[B]¹
In the rate law above, the rate is second order with respect to A and first order with respect to B. The overall order of reaction is a third order reaaction given as; 2+ 1 = 3
Answer:
Photosynthetic bacteria must take in <u>Carbon Dioxide</u> to live, and they release <u>Oxygen </u> . Animals must take <u>Oxygen </u> to live, and they release <u>Carbon Dioxide.</u>
Explanation:
Photosynthesis:
It is the process in which in the presence of sun light and chlorophyll by using carbon dioxide and water plants produce the oxygen and glucose.
Carbon dioxide + water + energy → glucose + oxygen
water is supplied through the roots, carbon dioxide collected through stomata and sun light is capture by chloroplast.
Chemical equation:
6H₂O + 6CO₂ + energy → C₆H₁₂O₆ + 6O₂
Photosynthetic bacteria perform same function as plants. These bacteria contain light harvesting pigments absorb carbon dioxide and release oxygen.
While animals take oxygen and release carbon dioxide to live. This respiration process is opposite to the photosynthesis.
Glucose + oxygen → carbon dioxide + water + 38ATP