1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oksi-84 [34.3K]
3 years ago
6

A 500 kg dragster accelerates from rest to a final speed of 100 m/s in 400 m (about a quarter of a mile) and encounters an avera

ge frictional force of 1200 n. what is its average power output in watts and horsepower if this takes 7.30 s?
Physics
2 answers:
ioda3 years ago
7 0

Answer:

276712.33 Watt , 371 h p

Explanation:

m = 500 kg, u = 0, v = 100 m/s, s = 400 m, t = 7.30 s

frictional force = 1200 N

Use third equation of motion

v^2 = u^2 + 2 as

100 x 100 = 0 + 2 x a x 400

a = 12.5 m/s^2

Applied force, F = m x a = 500 x 12.5 = 6250 N

Net Force, Fnet = applied force - frictional force = 6250 - 1200 = 5050 N

Power, P = Work / time = Net force x distance / time

P = 5050 x 400 / 7.30 =  276712.33 Watt

1 hp = 746 watt

So, P = 276712.33 / 746 = 371 h p

Fantom [35]3 years ago
3 0
In order to accelerate the dragster at a speed v_f = 100 m/s, its engine must do a work equal to the increase in kinetic energy of the dragster. Since it starts from rest, the initial kinetic energy is zero, so the work done by the engine to accelerate the dragster to 100 m/s is
W= K_f - K_i = K_f =  \frac{1}{2}mv_f^2=2.5 \cdot 10^6 J

however, we must take into account also the fact that there is a frictional force doing work against the dragster, and the work done by the frictional force is:
W_f = F_f d = -(1200 N)(400 m)= -4.8 \cdot 10^5 J
and the sign is negative because the frictional force acts against the direction of motion of the dragster.

This means that the total work done by the dragster engine is equal to the work done to accelerate the dragster plus the energy lost because of the frictional force, which is -W_f:
W_t = W + (-W_f)=2.5 \cdot 10^6 J+4.8 \cdot 10^5 J=2.98 \cdot 10^6 J

So, the power delivered by the engine is the total work divided by the time, t=7.30 s:
P= \frac{W}{t}= \frac{2.98 \cdot 10^6 J}{7.30 s}=4.08 \cdot 10^6 W

And since 1 horsepower is equal to 746 W, we can rewrite the power as
P=4.08 \cdot 10^6 W \cdot  \frac{1 hp}{746 W} =547 hp



You might be interested in
A temperature of 20°C is equal to ? °F.
Papessa [141]
The answer is 68 F. i hope this helps
6 0
3 years ago
Read 2 more answers
A 100-W lightbulb is placed in a cylinder equipped with a moveable piston. The lightbulb is turned on for 0.010 hour, and the as
Taya2010 [7]

Answer:

w =  - 508.53 joules

q = - 3091.47 joules

Explanation:

Let us convert the time in hours into seconds

0.010* 3600\\= 36

Change in internal energy

\delta E = p * \delta t

where E is the internal energy in Joules

p is the power in watts

and t is the time in seconds

\delta E = - 100 * 36\\

\delta E = - 3600 Joules

Amount of work done by the system

w = - P * \delta V

where P is the pressure and V is the volume

Substituting the given values in above equation, we get -

w = - 1 * ( 5.92 -0.90)\\

w = -5.02 liter-atmospheres

Work done in Joules

- 5.02 * 101.3\\= 508.53Joules

q = \delta E - w\\

Substituting the given values we get -

q = - 3600 - (-508.53)\\q = - 3091.47

Thus

w =  - 508.53 joules

q = - 3091.47 joules

7 0
3 years ago
A 0.150 kg stone rests on a frictionless, horizontal surface. A bullet of mass 9.50 g, traveling horizontally at 380 m/s, strike
Anvisha [2.4K]

Answer:

(a)Magnitude=28.81 m/s

Direction=33.3 degree below the horizontal

(b) No, it is not perfectly elastic collision

Explanation:

We are given that

Mass of stone, M=0.150 kg

Mass of bullet, m=9.50 g=9.50\times 10^{3} kg

Initial speed of bullet, u=380 m/s

Initial speed of stone, U=0

Final speed of bullet, v=250m/s

a. We have to find the magnitude and direction of the velocity of the stone after it is struck.

Using conservation of momentum

mu+ MU=mv+ MV

Substitute the values

9.5\times 10^{-3}\times 380 i+0.150(0)=9.5\times 10^{-3} (250)j+0.150V

3.61i=2.375j+0.150V

3.61 i-2.375j=0.150V

V=\frac{1}{0.150}(3.61 i-2.375j)

V=24.07i-15.83j

Magnitude of velocity of stone

=\sqrt{(24.07)^2+(-15.83)^2}

|V|=28.81 m/s

Hence, the magnitude and direction of the velocity of the stone after it is struck, |V|=28.81 m/s

Direction

\theta=tan^{-1}(\frac{y}{x})

=tan^{-1}(\frac{-15.83}{24.07})

\theta=tan^{-1}(-0.657)

=33.3 degree below the horizontal

(b)

Initial kinetic energy

K_i=\frac{1}{2}mu^2+0=\frac{1}{2}(9.5\times 10^{-3})(380)^2

K_i=685.9 J

Final kinetic energy

K_f=\frac{1}{2}mv^2+\frac{1}{2}MV^2

=\frac{1}{2}(9.5\times 10^{-3})(250)^2+\frac{1}{2}(0.150)(28.81)^2

K_f=359.12 J

Initial kinetic energy is not equal to final kinetic energy. Hence, the collision is not perfectly elastic collision.

5 0
2 years ago
To model time-variant data, one must create a new entity in an m:n relationship with the original entity.
Ksenya-84 [330]

To model time-variant data, one must create a new entity in an m:n relationship with the original entity, is a False statement.

  • Like the majority of software engineering initiatives, the ER process begins with gathering user requirements. What information must be retained, what questions must be answered, and what business rules must be implemented (For instance, if the manager column in the DEPARTMENT table is the only column, we have simply committed to having one manager for each department.)
  • The end result of the E-R modeling procedure is an E-R diagram that can be roughly mechanically transformed into a set of tables. Tables will represent both entities and relationships; entity tables frequently have a single primary key, but the primary key for relationship tables nearly invariably involves numerous characteristics.

To know more about  entity AND relationship  visit : brainly.com/question/28232864

#SPJ4

6 0
1 year ago
Calculate the maximum capillary rise/fall of mercury in a 0.5 mm radius glass capillary. Assume that the surface tension for mer
tekilochka [14]

Answer: 0.01 m

Explanation: The formulae for capillarity rise or fall is given below as

h = (2T×cosθ)/rpg

Where θ = angle mercury made with glass = 50°

T = surface tension = 0.51 N/m

g = acceleration due gravity = 9.8 m/s²

r = radius of tube = 0.5mm = 0.0005m

p = density of mercury.

h = height of rise or fall

From the question, specific gravity of density = 13.3

Where specific gravity = density of mercury/ density of water, where density of water = 1000 kg/m³

Hence density of mercury = 13.3×1000 = 13,300 kg/m³.

By substituting parameters, we have that

h = 2×0.51×cos 50/0.0005×9.8×13,300

h = 0.6556/65.17

h = 0.01 m

8 0
2 years ago
Other questions:
  • Pretend a system is having Transverse waves. And those transverse waves on a string have wave speed 8.00 m/s amplitude 0.0700m a
    15·1 answer
  • When a DVD is played, a laser light hits the surface of the disk and then returns to the detector. An illustration of DVD with a
    9·1 answer
  • Do 3-7 for me? It is science and i hate doing science hw.
    15·1 answer
  • A 6 N force and a 15 N force act on an object. The moment arm of the 6 N force is 0.4 m. If the 15 N 20. force provides 5 times
    12·1 answer
  • How does the electric force between two charged particles change if one
    10·1 answer
  • What is the angle of incidence in air of a light ray whose angle of refraction in glass is half the angle of incidence? Show pro
    10·1 answer
  • What is the phase of the Moon if it . . .
    10·1 answer
  • 3. When two liquids are mixed and a solid
    13·1 answer
  • A 0.5 kg object, initially at rest, is pulled to the right along a frictionless horizontal surface by a constant horizontal forc
    13·1 answer
  • What current is required in the windings of a long solenoid that has 1580 turns uniformly distributed over a length of 0.44 m in
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!