For this problem, we use the conservation of momentum as a solution. Since momentum is mass times velocity, then,
m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'
where
v₁ and v₂ are initial velocities of cart A and B, respectively
v₁' and v₂' are final velocities of cart A and B, respectively
m₁ and m₂ are masses of cart A and B, respectively
(7 kg)(0 m/s) + (3 kg)(0 m/s) = (7 kg)(v₁') + (3 kg)(6 m/s)
Solving for v₁',
v₁' = -2.57 m/s
<em>Therefore, the speed of cart A is at 2.57 m/s at the direction opposite of cart B.</em>
Answer
Given,
Magnetic field, B = 0.0000193 T
speed, v = 121 m/s
mass of electron, m = 9.11 x 10⁻³¹ Kg
charge of electron, q = 1.6 x 10⁻¹⁹ C
radius of the electron path, r = ?


r = 3.64 x 10⁻⁵ m
We know frequency is inverse of time period
d = v t



t = 1.889 x 10⁻⁶ s.
now, frequency



Answer:
The energy stored in the spring would be 1 joule.
Explanation:
hope that helps?
It is a field of study that make direct use of phenomena that is "quantum-mechanincal", such as superposition and entanglement. It's used to perform operations on data