Answer:
D) equal to the flux of electric field through the Gaussian surface B.
Explanation:
Flux through S(A) = Flux through S (B ) = Charge inside/ ∈₀
Answer:
The second projectile was 1.41 times faster than the first.
Explanation:
In the ballistic pendulum experiment, the speed (v) of the projectile is given by:
<em>where m: is the mass of the projectile, M: is the mass of the pendulum, g: is the gravitational constant and h: is the maximum height of the pendulum. </em>
To know how many times faster was the second projectile than the first, we need to take the ratio for the velocities for the projectiles 2 and 1:
(1)
<em>where m₁ and m₂ are the masses of the projectiles 1 and 2, respectively, and h₁ and h₂ are the maximum height reached by the pendulum by the projectiles 1 and 2, respectively. </em>
Since the projectile 1 has the same mass that the projectile 2, we can simplify equation (1):

Therefore, the second projectile was 1.41 times faster than the first.
I hope it helps you!
The force vector that has a magnitude of 12.0 N. and is oriented 60° to the left of the (y) has the followings components:
To solve this exercise the formulas and procedures we will use are:
- v(x) = v * cosine (angle)
- v(y) = v * sine (angle).
Where:
- v= magnitude of the vector
- v(x) = component of the vector on the (x) axis
- v(y) = component of the vector on the (y) axis
- angle = angle
Information about the problem:
- angle = 60º
- v = 12.0 N
- v(x)= ?
- v(y)= ?
Applying the formula of the component of the vector in the (x) axis we have:
v(x) = v * cosine (angle).
v(x) = 12.0 N * cosine (60º)
v(x) =6 N
Applying the formula of the component of the vector in the (y) axis we have:
v(y) = v * sine (angle)
v(y) = 12.0 N * sine (60º)
v(y) = 10.39 N
<h3>What is a vector?</h3>
It can be said to be a straight line described by a point (a) and (b) that has direction and sense.
Learn more about vector at: brainly.com/question/2094736
#SPJ4
Answer:
Explanation:
net force on the skier = mg sin 39 - μ mg cos39
mg ( sin39 - μ cos39 )
= 73 x 9.8 ( .629 - .116)
= 367 N
impulse = net force x time = change in momentum .
= 367 x 5 = 1835 kg m /s
velocity of the skier after 5 s = 1835 / 73
= 25.13 m /s
b )
net force becomes zero
mg ( sin39 - μ cos39 ) = 0
μ = tan39
= .81
c )
net force becomes zero , so he will continue to go ahead with constant speed of 25.13 m /s
so he will have speed of 25.13 m /s after 5 s .
The two wires carry current in opposite directions: this means that if we see them from above, the magnetic field generated by one wire is clock-wise, while the magnetic field generated by the other wire is anti-clockwise. Therefore, if we take a point midway between the two wires, the resultant magnetic field at this point is just the sum of the two magnetic fields, since they act in the same direction.
Therefore, we should calculate the magnetic field generated by each wire and then calculate their sum. We are located at a distance r=0.10 m from each wire.
The magnetic field generated by wire 1 is:

The magnetic field generated by wire 2 is:

And so, the resultant magnetic field at the point midway between the two wires is