Answer:
1. Elastic collision
2. Inelastic collision
Explanation:
Elastic collision: collision is said to be elastic if total kinetic energy is not conserved and if there is a rebound after collision
the collision is described by the equation bellow
Inelastic collision: this type of collision occurs when the total kinetic energy of a body is conserved or when the bodies sticks together and move with a common velocity
the collision is described by the equation bellow
The period of the block's mass is changed by a factor of √2 when the mass of the block was doubled.
The time period T of the block with mass M attached to a spring of spring constant K is given by,
T = 2π(√M/K).
Let us say that, when we increased the mass to 2M, the time periods of the block became T', the spring constant is not changed, so, we can write,
T' = 2π(√2M/K)
Putting T = 2π(√M/K) above,
T' =√2T
So, here we can see, if the mass is doubled from it's initial value. The time period of the mass will be changed by a factor of √2.
To know more about time period of mass, visit,
brainly.com/question/20629494
#SPJ4
1. D - sound travels the fastest through solids
2. 50 mm/s - v=fa
3. B - only process that involves changing waves
Answer:
<h2>
E = 2.8028*10⁻¹⁹ Joules</h2>
Explanation:
The minimum energy needed to eject electrons from a metal with a threshold frequency fo is expressed as E = hfo
h = planck's constant
fo = threshold frequency
Given the threshold frequency fo = 4.23×10¹⁴ s⁻¹
h = 6.626× 10⁻³⁴ m² kg / s
Substituting this value into the formula to get the energy E
E = 4.23×10¹⁴ * 6.626 × 10⁻³⁴
E = 28.028*10¹⁴⁻³⁴
E = 28.028*10⁻²⁰
E = 2.8028*10⁻¹⁹ Joules
Answer:
A.) 27000 kgm/s
18000 kgm/s
B.) Va = 22 m/s
C.) 19800 kgm/s
25200 kgm/s
Explanation: Given that the velocity of A and B are 30 m/s and 20 m/s. And of the same mass M = 9 × 10^5g
M = 9×10^5/1000 = 900 kg
A.) Initial momentum of A
Mu = 900 × 30 = 27000 kgm/s
Initial momentum of B
Mu = 900 × 20 = 18000 kgm/s
B.) if they have an accident and then the velocity of the B is 28 m/s, find out velocity of A.
Momentum before impact = momentum after impact
Given that Vb = 28 m/s
27000 + 18000 = 900Va + 900 × 28
45000 = 900Va + 25200
900Va = 45000 - 25200
900Va = 19800
Va = 19800/900
Va = 22 m/s
C.) Momentum of A after impact
MV = 900 × 22 = 19800 kgm/s
Momentum of B after impact
MV = 900 × 28 = 25200 kgm/s