Work done by the force = Force x displacement. Power = work done/time = F.s/t = F.u.t/t = F.u = 95 x 20 = 1900J. {S=ut because acceleration is zero since car is moving at constant velocity}.
The potential difference across 3 Ohm resistor is 20V.
The resistors are connected in parallel which means all the three resistances have a fully potential difference of 20V.
Answer:
#See solution for details.
Explanation:
1.
Tools:
.
:Calculate the speed of the wave using the time,
it takes to travel along the rope. Rope's length,
is measured using the meter stick.
-Attach one end of rope to a wall or post, shake from the unfixed end to generate a pulse. Measure the the time it takes for the pulse to reach the wall once it starts traveling using the stopwatch.
-Speed of the pulse can then be obtained as:

: Apply force of known value to the rope then use the following relation equation to find the speed of a pulse that travels on the rope.

-Use the measuring stick and measuring scale to determine
values of the rope then obtain
.
-Use the force measuring constant to determine
. These values can the be substituted in
to obtain 
The pressure value is given by the equation,

Where,
represents the density of the liquid
g= gravity
h= Heigth
A) For the measurement of the guage pressure we have the data data,



Replacing we get,

P_g = 12395Pa[/tex]
In order to find the Absolute pressure, we perform a sum between the atmospheric pressure and that of the Gauge,
B) The atmospheric pressure at sea level is 101325Pa, assuming ideal conditions, we will take this pressure for our calculation, so

V=IR, therefore when resistance is constant the voltage and current are directly proportional