To solve this problem we will apply the concepts related to energy conservation. Here we will use the conservation between the potential gravitational energy and the kinetic energy to determine the velocity of this escape. The gravitational potential energy can be expressed as,

The kinetic energy can be written as,

Where,
Gravitational Universal Constant
Mass of Earth
Height
Radius of Earth
From the conservation of energy:

Rearranging to find the velocity,
Escape velocity at a certain height from the earth
If the height of the satellite from the earth is h, then the total distance would be the radius of the earth and the eight,


Replacing the values we have that


Therefore the escape velocity is 3.6km/s
10m/s - 3m/s = 7m/s
The resultant velocity is 7m/s
Two sustainability challenges you would face when developing a sustainable food supply for a Martian colony would relate to Martian radiation and soil characteristics.
According to experiments carried out, Martian radiation is about 17 times more intense than on Earth, which impacts vegetation growth and crop quality.
Therefore, it is necessary to develop resources that enable a sustainable food supply in remote locations, such as for a Martian colony, as some production challenges may be related to food resistance and the amount of oxygen and water needed for growth.
Some solutions, therefore, could be planting in an underground shelter, which would be a controlled environment where conditions would be more favorable for the production of food with greater quality and diversity.
Learn more about sustainability here:
brainly.com/question/25713190
Answer:
mechanical energy to heat energy to chemical energy