Answer:
x=2.4t+4.9t^2
Explanation:
This equation is one of the kinematic equations to solve for distance. The original equation is as follows:
X=Xo+Vt+1/2at^2
We know that the ball starts at rest meaning that its initial velocity and position is zero.
X=0+Vt+1/2at^2
Since it is going down the ramp, you can use the acceleration of gravity constant. (9.81 m/s^2) and simplify that with the 1/2.
X=Vt+4.9t^2
Note: Since the positive direction in this problem is down, you are adding the 4.9t^2, but if a question says that the downward direction is negative, you would subtract those values.
Now, substitute in your velocity value.
X=2.4t+4.9t^2
Answer:

Explanation:
h = Planck's constant = 
m = Mass of electron = 
k = Coulomb constant = 
e = Charge of electron = 
n = 1 (ground state)
Angular momentum is given by

From Bohr's atomic model we have


The centripetal force will balance the electrostatic force

The diameter is 
Answer:
a. 
b.
must be the minimum magnitude of deceleration to avoid hitting the leading car before stopping
c.
is the time taken to stop after braking
Explanation:
Given:
- speed of leading car,

- speed of lagging car,

- distance between the cars,

- deceleration of the leading car after braking,

a.
Time taken by the car to stop:

where:
, final velocity after braking
time taken


b.
using the eq. of motion for the given condition:

where:
final velocity of the chasing car after braking = 0
acceleration of the chasing car after braking

must be the minimum magnitude of deceleration to avoid hitting the leading car before stopping
c.
time taken by the chasing car to stop:


is the time taken to stop after braking
Answer:
– 2.5 m/s²
Explanation:
We have,
• Initial velocity, u = 180 km/h = 50 m/s
• Final velocity, v = 0 m/s (it stops)
• Time taken, t = 20 seconds
We have to find acceleration, a.
a = (v ― u)/t
a = (0 – 50)/20 m/s²
a = –50/20 m/s²
a = – 5/2 m/s²
a = – 2.5 m/s² (Velocity is decreasing) [Answer]
Answer: 313920
Explanation:First, we’re going to assume that the top of the circular plate surface is 2 meters under the water. Next, we will set up the axis system so that the origin of the axis system is at the center of the plate.
Finally, we will again split up the plate into n horizontal strips each of width Δy and we’ll choose a point y∗ from each strip. Attached to this is a sketch of the set up.
The water’s surface is shown at the top of the sketch. Below the water’s surface is the circular plate and a standard xy-axis system is superimposed on the circle with the center of the circle at the origin of the axis system. It is shown that the distance from the water’s surface and the top of the plate is 6 meters and the distance from the water’s surface to the x-axis (and hence the center of the plate) is 8 meters.
The depth below the water surface of each strip is,
di = 8 − yi
and that in turn gives us the pressure on the strip,
Pi =ρgdi = 9810 (8−yi)
The area of each strip is,
Ai = 2√4− (yi) 2Δy
The hydrostatic force on each strip is,
Fi = Pi Ai=9810 (8−yi) (2) √4−(yi)² Δy
The total force on the plate is found on the attached image.