Answer:
The x-component of the electric field at the origin = -11.74 N/C.
The y-component of the electric field at the origin = 97.41 N/C.
Explanation:
<u>Given:</u>
- Charge on first charged particle,

- Charge on the second charged particle,

- Position of the first charge =

- Position of the second charge =

The electric field at a point due to a charge
at a point
distance away is given by

where,
= Coulomb's constant, having value 
= position vector of the point where the electric field is to be found with respect to the position of the charge
.
= unit vector along
.
The electric field at the origin due to first charge is given by

is the position vector of the origin with respect to the position of the first charge.
Assuming,
are the units vectors along x and y axes respectively.

Using these values,

The electric field at the origin due to the second charge is given by

is the position vector of the origin with respect to the position of the second charge.

Using these values,

The net electric field at the origin due to both the charges is given by

Thus,
x-component of the electric field at the origin = -11.74 N/C.
y-component of the electric field at the origin = 97.41 N/C.
I believe it’s A, i could be wrong tho 3
ANSWER:
C. Small, minimize
Hope it helps u!
The correct answer B. Not affected by cognition
Explanation:
In the Social Cognitive Theory, the most important aspects are social interaction and cognition that involves mental processes such as comprehension. Indeed, this theory proposes behaviors are the result of observing other people as part of social interaction, understanding this behavior, and then imitating it.
Despite this, many psychologists do not support this theory and the main reason is that they deny the learning of behavior is related to cognition or complex mental processes. Instead, some believe behavior is the result of certain impulses or that is regulated by conditioning such as behaving correctly to avoid negative consequences.
The boundary between the crust and mantle is marked by a seismic-velocity discontinuity is called Mohorovicic discontinuity.
Mohorovicic discontinuity was discovered by Andrija Mohorovicic in 1909 who was a Croatian seismologist. He realized that the velocity of a seismic wave is related to the material's density where it is moving through. He decoded that the acceleration of the seismic waves that are observed within outer shell of the earth is a compositional change. Thus, the acceleration should be caused by a material of higher density.