Answer:
It is in the state of "thermal arrest"
Explanation:
The temperature stays constant during the phase change process . This is because the matter has more internal energy and heat has to be taken away for the solidification process to begin. The energy that is required for a phase change is know as latent heat (which is the energy released or absorbed by a body during a thermodynamic process).
When the reaction equation is:
CaSO3(s) → CaO(s) + SO2(g)
we can see that the molar ratio between CaSO3 & SO2 is 1:1 so, we need to find first the moles SO2.
to get the moles of SO2 we are going to use the ideal gas equation:
PV = nRT
when P is the pressure = 1.1 atm
and V is the volume = 14.5 L
n is the moles' number (which we need to calculate)
R ideal gas constant = 0.0821
and T is the temperature in Kelvin = 12.5 + 273 = 285.5 K
so, by substitution:
1.1 * 14.5 L = n * 0.0821 * 285.5
∴ n = 1.1 * 14.5 / (0.0821*285.5)
= 0.68 moles SO2
∴ moles CaSO3 = 0.68 moles
so we can easily get the mass of CaSO3:
when mass = moles * molar mass
and we know that the molar mass of CaSO3= 40 + 32 + 16 * 3 = 120 g/mol
∴ mass = 0.68 moles* 120 g/mol = 81.6 g
Answer:
Explanation:
Iron is the correct answer
Answer:
The empirical formula is ZnO2
Explanation:
What is the empirical formula for a compound which contains 67.1% zinc and the rest is oxygen?
Step 1: Data given
Suppose the compound has a mass of 100.0 grams
A compound contains:
67.1 % Zinc = 67.1 grams
100 - 67.1 = 32.9 % oxygen = 32.9 grams
Molar mass of Zinc = 65.38 g/mol
Molar mass of O = 16 g/mol
Step 2: Calculate moles of Zinc
Suppose the compound is 100 grams
Moles Zn = 67. 10 grams / 65.38 g/mol
Moles Zn = 1.026 moles
Step 3: Calculate moles of O
Moles O = 32.90 grams / 16.00 g/mol
Moles O = 2.056 moles
Step 4: Calculate mol ratio
We divide by the smallest amount of moles
Zn: 1.026/1.026 = 1
O: 2.056/1.026 = 2
The empirical formula is ZnO2
To control this we can calculate the % Zinc for 1 mol
65.38 / (65.38+2*16) = 0.67.1 = 67.2 %