Answer:
I think B but I'm not sure.
Consider the halogenation of ethene is as follows:
CH₂=CH₂(g) + X₂(g) → H₂CX-CH₂X(g)
We can expect that this reaction occurring by breaking of a C=C bond and forming of two C-X bonds.
When bond break it is endothermic and when bond is formed it is exothermic.
So we can calculate the overall enthalpy change as a sum of the required bonds in the products:
Part a)
C=C break = +611 kJ
2 C-F formed = (2 * - 552) = -1104 kJ
Δ H = + 611 - 1104 = - 493 kJ
2C-Cl formed = (2 * -339) = - 678 kJ
ΔH = + 611 - 678 = -67 kJ
2 C-Br formed = (2 * -280) = -560 kJ
ΔH = + 611 - 560 = + 51 kJ
2 C-I Formed = (2 * -209) = -418 kJ
ΔH = + 611 - 418 = + 193 kJ
Part b)
As we can see that the highest exothermic bond formed is C-F bond so from bond energies we can found that addition of fluoride is the most exothermic reaction
Answer:
Milk is essentially a colloidal dispersion of fat in water. ... However, the fact remains that the fat and water components cannot be mixed together from a solution. There are therefore, two distinct immiscible liquid phase's present, which is why it is a heterogeneous mixture.
Answer:
true
Explanation:
This is because it helps distribute the particles that are being dissolved.
Answer:
acetic acid, sodium hydroxide
Explanation:
A strong acid is an acid that ionizes in water to give all its hydrogen ion. Weak acid only ionize to a certain degree. Acetic acid (CH3COOH) only ionize to give one hydrogen ion despite having other hydrogen atom. This account for its weak nature as an acid as shown below:
CH3COOH <=> H^+ + CH3COO^-
A strong base is a base that ionizes in water to give all it hydroxide ion. Sodium hydroxide(NaOH) ionizes to give all its hydroxide ions. This make it a strong base as shown below;
NaOH <=> Na^+ + OH^-