Incomplete question as the mass of baseball is missing.I have assume 0.2kg mass of baseball.So complete question is:
A baseball has mass 0.2 kg.If the velocity of a pitched ball has a magnitude of 44.5 m/sm/s and the batted ball's velocity is 55.5 m/sm/s in the opposite direction, find the magnitude of the change in momentum of the ball and of the impulse applied to it by the bat.
Answer:
ΔP=20 kg.m/s
Explanation:
Given data
Mass m=0.2 kg
Initial speed Vi=-44.5m/s
Final speed Vf=55.5 m/s
Required
Change in momentum ΔP
Solution
First we take the batted balls velocity as the final velocity and its direction is the positive direction and we take the pitched balls velocity as the initial velocity and so its direction will be negative direction.So we have:

Now we need to find the initial momentum
So

Substitute the given values

Now for final momentum

So the change in momentum is given as:
ΔP=P₂-P₁
![=[(11.1kg.m/s)-(-8.9kg.m/s)]\\=20kg.m/s](https://tex.z-dn.net/?f=%3D%5B%2811.1kg.m%2Fs%29-%28-8.9kg.m%2Fs%29%5D%5C%5C%3D20kg.m%2Fs)
ΔP=20 kg.m/s
A. A child rubs a balloon
Answer:
stress,depression and anxiety by improving self esteem.
Velocity is about direction traveled in comparison to speed which is just distance with out direction
Answer:
Phase Difference
Explanation:
When the sound waves have same wavelength, frequency and amplitude we just need the phase difference between them at a particular location to determine whether the waves are in constructive interference or destructive interference.
Interference is a phenomenon in which there is superposition of two coherent waves at a particular location in the medium of propagation.
When the waves are in constructive interference then we get a resultant wave of maximum amplitude and vice-versa in case of destructive interference.
- For constructive interference the waves must have either no phase difference or a phase difference of nλ, where n is any natural number.
- For destructive interference the waves must have a phase difference of n×0.5λ, where n is any odd number.