A large force is required to accelerate the mass of the bicycle and rider. Once the desired constant velocity is reached, a much smaller force is sufficient to overcome the ever-present frictional forces.
need speed of sound on lhs
Answer:
The magnitude of momentum of the airplane is
.
Explanation:
Given that,
Mass of the airplane, m = 3400 kg
Speed of the airplane, v = 450 miles per hour
Since, 1 mile per hour = 0.44704 m/s
v = 201.16 m/s
We need to find the magnitude of momentum of the airplane. It is given by the product of mas and velocity such that,



or

So, the magnitude of momentum of the airplane is
. Hence, this is the required solution.
Wavelength of X-rays = 10⁻¹⁰ m
Wavelength of UV = 1000 x 10⁻¹⁰
= 10⁻⁷ m
Answer:
The kinetic energy is 1200 J
Explanation:
The Principle of Conservation of energy states that "energy is neither created nor destroyed, it is transformed".
This means that energy can be transformed from one form to another, but the total amount of energy always remains constant, that is, the total energy is the same before and after each transformation.
The mechanical energy of a body or a physical system is the sum of its kinetic energy and the potential energy. According to the Principle of Conservation of Energy for mechanical energy, the total mechanical energy that a body possesses is constant at every instant of time.
Since mechanical energy is equal to the sum of kinetic energy and gravitational potential energy that a body possesses, the only way to stay constant is that:
- when the kinetic energy increases the gravitational potential energy decreases,
- when gravitational potential energy increases, kinetic energy decreases.
Due to the Principle of Conservation of Energy you can say that the gravitational potential energy is converted to kinetic energy. So Gravitational potential energy at the top = kinetic energy at the bottom
<u><em>The kinetic energy is 1200 J</em></u>