Answer:
5.72 s
Explanation:
From Newton's law, F = ma
The East is +ve direction, Hence,
F = +8930 N
m = 2290 kg
a = ?
8930 = 2290 × a
a = 8930/2290 = 3.90 m/s²
So, we will find the time it takes the car to stop using the equations of motion
a = 3.90 m/s²
u = initial velocity of the car = - 22.3 m/s (the velocity is to the west)
v = final velocity of the car = 0 m/s (since the car comes to rest)
t = time taken for the car to come to rest = ?
v = u + at
0 = - 22.3 + (3.90)(t)
3.9t = 22.3
t = 5.72 s
Answer:
1) 0.51 seconds.
2) 1.45 m/s.
Explanation:
given, height from which cat falls = 1.3 m
we know that, s = ut +
at².
here if we consider cat moment only in downward direction,
intial velocity of cat in downward direction , u = 0.
so, time, t =
.
⇒ t =
= 0.51 seconds.
t = 0.51 seconds.
now, consider cat moment only in forward direction
s = ut , since acceleration is zero in forward direction
⇒ u =
.
so, u =
= 1.45 m/s .
<span>A capacitor with a very large capacitance is in series with a capacitor
that has a very small capacitance.
The capacitance of the series combination is slightly smaller than the
capacitance of the small capacitor. (choice-C)
The capacitance of a series combination is
1 / (1/A + 1/B + 1/C + 1/D + .....) .
If you wisk, fold, knead, and mash that expression for a while,
you find that for only two capacitors in series, (or 2 resistors or
two inductors in parallel), the combination is
(product of the 2 individuals) / (sum of the individuals) .
In this problem, we have a humongous one and a tiny one.
Let's call them 1000 and 1 .
Then the series combination is
(1000 x 1) / (1000 + 1)
= (1000) / (1001)
= 0.999 000 999 . . .
which is smaller than the smaller individual.
It'll always be that way. </span>
It slows the object down so it cannot move well and evetually the object cannot be pushed and farther