Using the appropriate approximations:
dx/L = mλ
d = slit separation
x = fringe spacing
L = distance between slits and screen
m = some integer, used to determine the distance from the central bright fringe to another bright fringe
We don't really need a value for m because we're calculating the distance between any pair of consecutive fringes. Let's just set m = 1
Given values:
d = 1.0mm
L = 2.0m
λ = 480nm
Substitute the terms in the equation with our given values and solve for x:
1.0*10⁻³*x/2 = 480*10⁻9
<h3>x = 0.96mm</h3>
Solving this using the time, we know that range = horizontal velocity x time of flight
since
there are no horizontal forces acting on the ball, there are no
horizontal accelerations and the initial horizontal velocity of 36 cos
28 will be constant throughout. If we use the correct time of flight given the launch parameters, we have
range = 36 cos 28 x 3.44 s = 109.3 m
Answer:
3 x 10^5 J
Explanation:
mass of substance, m = 1 g = 0.001 kg
Velocity of light, c = 3 x 10^8 m/s
According to the Einstein mass energy equivalence, the energy associated with the mass is given by
E = m c^2
E = 0.001 x 3 x 10^8
E = 3 x 10^5 J
They lack a cell nucleus.
Answer:
1000 N
Explanation:
The magnitude of the electrostatic force between two charged object is given by

where
k is the Coulomb constant
q1, q2 is the magnitude of the two charges
r is the distance between the two objects
Moreover, the force is:
- Attractive if the two forces have opposite sign
- Repulsive if the two forces have same sign
In this problem:
are the two charges
r = 3000 m is their separation
Therefore, the electric force between the charges is:
